Convergence of Taylor series in Fock spaces
Studia Mathematica, Tome 220 (2014) no. 2, pp. 179-186
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
It is well known that the Taylor series of every function in the Fock space $F^p_\alpha $
converges in norm when $1 p \infty $. It is also known that this is no longer true when $p=1$.
In this note we consider the case $0 p 1$ and show that the Taylor series of functions in $F^p_\alpha $ do not necessarily converge
“in norm”.
Keywords:
known taylor series every function fock space alpha converges norm infty known longer note consider taylor series functions alpha necessarily converge norm
Affiliations des auteurs :
Haiying Li 1
@article{10_4064_sm220_2_6,
author = {Haiying Li},
title = {Convergence of {Taylor} series in {Fock} spaces},
journal = {Studia Mathematica},
pages = {179--186},
publisher = {mathdoc},
volume = {220},
number = {2},
year = {2014},
doi = {10.4064/sm220-2-6},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm220-2-6/}
}
Haiying Li. Convergence of Taylor series in Fock spaces. Studia Mathematica, Tome 220 (2014) no. 2, pp. 179-186. doi: 10.4064/sm220-2-6
Cité par Sources :