Convergence of Taylor series in Fock spaces
Studia Mathematica, Tome 220 (2014) no. 2, pp. 179-186

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

It is well known that the Taylor series of every function in the Fock space $F^p_\alpha $ converges in norm when $1 p \infty $. It is also known that this is no longer true when $p=1$. In this note we consider the case $0 p 1$ and show that the Taylor series of functions in $F^p_\alpha $ do not necessarily converge “in norm”.
DOI : 10.4064/sm220-2-6
Keywords: known taylor series every function fock space alpha converges norm infty known longer note consider taylor series functions alpha necessarily converge norm

Haiying Li 1

1 College of Mathematics and Information Science Henan Normal University Xinxiang 453007, P.R. China
@article{10_4064_sm220_2_6,
     author = {Haiying Li},
     title = {Convergence of {Taylor} series in {Fock} spaces},
     journal = {Studia Mathematica},
     pages = {179--186},
     publisher = {mathdoc},
     volume = {220},
     number = {2},
     year = {2014},
     doi = {10.4064/sm220-2-6},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm220-2-6/}
}
TY  - JOUR
AU  - Haiying Li
TI  - Convergence of Taylor series in Fock spaces
JO  - Studia Mathematica
PY  - 2014
SP  - 179
EP  - 186
VL  - 220
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm220-2-6/
DO  - 10.4064/sm220-2-6
LA  - en
ID  - 10_4064_sm220_2_6
ER  - 
%0 Journal Article
%A Haiying Li
%T Convergence of Taylor series in Fock spaces
%J Studia Mathematica
%D 2014
%P 179-186
%V 220
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/sm220-2-6/
%R 10.4064/sm220-2-6
%G en
%F 10_4064_sm220_2_6
Haiying Li. Convergence of Taylor series in Fock spaces. Studia Mathematica, Tome 220 (2014) no. 2, pp. 179-186. doi: 10.4064/sm220-2-6

Cité par Sources :