Convergence of Taylor series in Fock spaces
Studia Mathematica, Tome 220 (2014) no. 2, pp. 179-186
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
It is well known that the Taylor series of every function in the Fock space $F^p_\alpha $
converges in norm when $1 p \infty $. It is also known that this is no longer true when $p=1$.
In this note we consider the case $0 p 1$ and show that the Taylor series of functions in $F^p_\alpha $ do not necessarily converge
“in norm”.
Keywords:
known taylor series every function fock space alpha converges norm infty known longer note consider taylor series functions alpha necessarily converge norm
Affiliations des auteurs :
Haiying Li  1
@article{10_4064_sm220_2_6,
author = {Haiying Li},
title = {Convergence of {Taylor} series in {Fock} spaces},
journal = {Studia Mathematica},
pages = {179--186},
year = {2014},
volume = {220},
number = {2},
doi = {10.4064/sm220-2-6},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm220-2-6/}
}
Haiying Li. Convergence of Taylor series in Fock spaces. Studia Mathematica, Tome 220 (2014) no. 2, pp. 179-186. doi: 10.4064/sm220-2-6
Cité par Sources :