On Hamel bases in Banach spaces
Studia Mathematica, Tome 220 (2014) no. 2, pp. 169-178

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

It is shown that no infinite-dimensional Banach space can have a weakly $K$-analytic Hamel basis. As consequences, (i) no infinite-dimensional weakly analytic separable Banach space $E$ has a Hamel basis $C$-embedded in $E( \mathrm {weak}) $, and (ii) no infinite-dimensional Banach space has a weakly pseudocompact Hamel basis. Among other results, it is also shown that there exist noncomplete normed barrelled spaces with closed discrete Hamel bases of arbitrarily large cardinality.
DOI : 10.4064/sm220-2-5
Keywords: shown infinite dimensional banach space have weakly k analytic hamel basis consequences infinite dimensional weakly analytic separable banach space has hamel basis c embedded mathrm weak infinite dimensional banach space has weakly pseudocompact hamel basis among other results shown there exist noncomplete normed barrelled spaces closed discrete hamel bases arbitrarily large cardinality

Juan Carlos Ferrando 1

1 Centro de Investigación Operativa Edificio Torretamarit, Avda de la Universidad s/n Universidad Miguel Hernández E-03202 Elche (Alicante), Spain
@article{10_4064_sm220_2_5,
     author = {Juan Carlos Ferrando},
     title = {On {Hamel} bases in {Banach} spaces},
     journal = {Studia Mathematica},
     pages = {169--178},
     publisher = {mathdoc},
     volume = {220},
     number = {2},
     year = {2014},
     doi = {10.4064/sm220-2-5},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm220-2-5/}
}
TY  - JOUR
AU  - Juan Carlos Ferrando
TI  - On Hamel bases in Banach spaces
JO  - Studia Mathematica
PY  - 2014
SP  - 169
EP  - 178
VL  - 220
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm220-2-5/
DO  - 10.4064/sm220-2-5
LA  - en
ID  - 10_4064_sm220_2_5
ER  - 
%0 Journal Article
%A Juan Carlos Ferrando
%T On Hamel bases in Banach spaces
%J Studia Mathematica
%D 2014
%P 169-178
%V 220
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/sm220-2-5/
%R 10.4064/sm220-2-5
%G en
%F 10_4064_sm220_2_5
Juan Carlos Ferrando. On Hamel bases in Banach spaces. Studia Mathematica, Tome 220 (2014) no. 2, pp. 169-178. doi: 10.4064/sm220-2-5

Cité par Sources :