Reducibility and unitary equivalence for a class of multiplication operators on the Dirichlet space
    
    
  
  
  
      
      
      
        
Studia Mathematica, Tome 220 (2014) no. 2, pp. 141-156
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
            
              We consider the reducibility and unitary equivalence of multiplication operators on the Dirichlet space. We first characterize reducibility of a multiplication operator induced by a finite Blaschke product and, as an application, we show that a multiplication operator induced by a Blaschke product with two zeros is reducible only in an obvious case. Also, we prove that a multiplication operator induced by a multiplier $\phi $ is unitarily equivalent to a weighted shift of multiplicity 2 if and only if $\phi =\lambda z^2$ for some unimodular constant $\lambda $.
            
            
            
          
        
      
                  
                    
                    
                    
                        
Keywords: 
consider reducibility unitary equivalence multiplication operators dirichlet space first characterize reducibility multiplication operator induced finite blaschke product application multiplication operator induced blaschke product zeros reducible only obvious prove multiplication operator induced multiplier phi unitarily equivalent weighted shift multiplicity only phi lambda unimodular constant lambda
                    
                    
                    
                  
                
                
                
                
                
                Affiliations des auteurs :
                
                
                  
                    
                
                
                
                
                
                
                
                
                
                
              Yong Chen 1 ; Young Joo Lee 2 ; Tao Yu 1
@article{10_4064_sm220_2_3,
     author = {Yong Chen and Young Joo Lee and Tao Yu},
     title = {Reducibility and unitary equivalence for a class of multiplication operators on the {Dirichlet} space},
     journal = {Studia Mathematica},
     pages = {141--156},
     publisher = {mathdoc},
     volume = {220},
     number = {2},
     year = {2014},
     doi = {10.4064/sm220-2-3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm220-2-3/}
}
                      
                      
                    TY - JOUR AU - Yong Chen AU - Young Joo Lee AU - Tao Yu TI - Reducibility and unitary equivalence for a class of multiplication operators on the Dirichlet space JO - Studia Mathematica PY - 2014 SP - 141 EP - 156 VL - 220 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/sm220-2-3/ DO - 10.4064/sm220-2-3 LA - en ID - 10_4064_sm220_2_3 ER -
%0 Journal Article %A Yong Chen %A Young Joo Lee %A Tao Yu %T Reducibility and unitary equivalence for a class of multiplication operators on the Dirichlet space %J Studia Mathematica %D 2014 %P 141-156 %V 220 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.4064/sm220-2-3/ %R 10.4064/sm220-2-3 %G en %F 10_4064_sm220_2_3
Yong Chen; Young Joo Lee; Tao Yu. Reducibility and unitary equivalence for a class of multiplication operators on the Dirichlet space. Studia Mathematica, Tome 220 (2014) no. 2, pp. 141-156. doi: 10.4064/sm220-2-3
Cité par Sources :
