Error rates in the Darling–Kac law
    
    
  
  
  
      
      
      
        
Studia Mathematica, Tome 220 (2014) no. 2, pp. 101-117
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
            
              This work provides rates of convergence in the Darling–Kac law for infinite measure preserving Pomeau–Manneville (unit interval) maps. Along the way we obtain error rates for the stable law associated with the first return map and the first return time to some suitable set inside the unit interval.
            
            
            
          
        
      
                  
                    
                    
                    
                        
Keywords: 
work provides rates convergence darling kac law infinite measure preserving pomeau manneville unit interval maps along obtain error rates stable law associated first return map first return time suitable set inside unit interval
                    
                    
                    
                  
                
                
                
                
                
                Affiliations des auteurs :
                
                
                  
                    
                
                
                
                
                
                
                
                
                
                
              Dalia Terhesiu 1
@article{10_4064_sm220_2_1,
     author = {Dalia Terhesiu},
     title = {Error rates in the {Darling{\textendash}Kac} law},
     journal = {Studia Mathematica},
     pages = {101--117},
     publisher = {mathdoc},
     volume = {220},
     number = {2},
     year = {2014},
     doi = {10.4064/sm220-2-1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm220-2-1/}
}
                      
                      
                    Dalia Terhesiu. Error rates in the Darling–Kac law. Studia Mathematica, Tome 220 (2014) no. 2, pp. 101-117. doi: 10.4064/sm220-2-1
Cité par Sources :
