Error rates in the Darling–Kac law
Studia Mathematica, Tome 220 (2014) no. 2, pp. 101-117
This work provides rates of convergence in the Darling–Kac law for infinite measure preserving Pomeau–Manneville (unit interval) maps. Along the way we obtain error rates for the stable law associated with the first return map and the first return time to some suitable set inside the unit interval.
Keywords:
work provides rates convergence darling kac law infinite measure preserving pomeau manneville unit interval maps along obtain error rates stable law associated first return map first return time suitable set inside unit interval
Affiliations des auteurs :
Dalia Terhesiu  1
@article{10_4064_sm220_2_1,
author = {Dalia Terhesiu},
title = {Error rates in the {Darling{\textendash}Kac} law},
journal = {Studia Mathematica},
pages = {101--117},
year = {2014},
volume = {220},
number = {2},
doi = {10.4064/sm220-2-1},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm220-2-1/}
}
Dalia Terhesiu. Error rates in the Darling–Kac law. Studia Mathematica, Tome 220 (2014) no. 2, pp. 101-117. doi: 10.4064/sm220-2-1
Cité par Sources :