1Department of Mathematics Ibaraki University Mito, Ibaraki 310-8512, Japan 2Department of Mathematics Osaka Kyoiku University Kashiwara, Osaka 582-8582, Japan
Studia Mathematica, Tome 220 (2014) no. 1, pp. 87-100
We introduce generalized Campanato spaces $\mathcal {L}_{p,\phi }$ on a probability space $(\varOmega ,\mathcal {F},P)$, where $p\in [1,\infty )$ and $\phi :(0,1]\to (0,\infty )$. If $p=1$ and $\phi \equiv 1$, then $\mathcal {L}_{p,\phi }=\mathrm {BMO}$. We give a characterization of the set of all pointwise multipliers on $\mathcal {L}_{p,\phi }$.
Keywords:
introduce generalized campanato spaces mathcal phi probability space varomega mathcal where infty phi infty phi equiv mathcal phi mathrm bmo characterization set pointwise multipliers mathcal phi
Affiliations des auteurs :
Eiichi Nakai 
1
;
Gaku Sadasue 
2
1
Department of Mathematics Ibaraki University Mito, Ibaraki 310-8512, Japan
2
Department of Mathematics Osaka Kyoiku University Kashiwara, Osaka 582-8582, Japan
@article{10_4064_sm220_1_5,
author = {Eiichi Nakai and Gaku Sadasue},
title = {Pointwise multipliers on martingale {Campanato} spaces},
journal = {Studia Mathematica},
pages = {87--100},
year = {2014},
volume = {220},
number = {1},
doi = {10.4064/sm220-1-5},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm220-1-5/}
}
TY - JOUR
AU - Eiichi Nakai
AU - Gaku Sadasue
TI - Pointwise multipliers on martingale Campanato spaces
JO - Studia Mathematica
PY - 2014
SP - 87
EP - 100
VL - 220
IS - 1
UR - http://geodesic.mathdoc.fr/articles/10.4064/sm220-1-5/
DO - 10.4064/sm220-1-5
LA - en
ID - 10_4064_sm220_1_5
ER -