Pointwise multipliers on martingale Campanato spaces
Studia Mathematica, Tome 220 (2014) no. 1, pp. 87-100 Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences

Voir la notice de l'article

We introduce generalized Campanato spaces $\mathcal {L}_{p,\phi }$ on a probability space $(\varOmega ,\mathcal {F},P)$, where $p\in [1,\infty )$ and $\phi :(0,1]\to (0,\infty )$. If $p=1$ and $\phi \equiv 1$, then $\mathcal {L}_{p,\phi }=\mathrm {BMO}$. We give a characterization of the set of all pointwise multipliers on $\mathcal {L}_{p,\phi }$.
DOI : 10.4064/sm220-1-5
Keywords: introduce generalized campanato spaces mathcal phi probability space varomega mathcal where infty phi infty phi equiv mathcal phi mathrm bmo characterization set pointwise multipliers mathcal phi

Eiichi Nakai 1 ; Gaku Sadasue 2

1 Department of Mathematics Ibaraki University Mito, Ibaraki 310-8512, Japan
2 Department of Mathematics Osaka Kyoiku University Kashiwara, Osaka 582-8582, Japan
@article{10_4064_sm220_1_5,
     author = {Eiichi Nakai and Gaku Sadasue},
     title = {Pointwise multipliers on martingale {Campanato} spaces},
     journal = {Studia Mathematica},
     pages = {87--100},
     year = {2014},
     volume = {220},
     number = {1},
     doi = {10.4064/sm220-1-5},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm220-1-5/}
}
TY  - JOUR
AU  - Eiichi Nakai
AU  - Gaku Sadasue
TI  - Pointwise multipliers on martingale Campanato spaces
JO  - Studia Mathematica
PY  - 2014
SP  - 87
EP  - 100
VL  - 220
IS  - 1
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm220-1-5/
DO  - 10.4064/sm220-1-5
LA  - en
ID  - 10_4064_sm220_1_5
ER  - 
%0 Journal Article
%A Eiichi Nakai
%A Gaku Sadasue
%T Pointwise multipliers on martingale Campanato spaces
%J Studia Mathematica
%D 2014
%P 87-100
%V 220
%N 1
%U http://geodesic.mathdoc.fr/articles/10.4064/sm220-1-5/
%R 10.4064/sm220-1-5
%G en
%F 10_4064_sm220_1_5
Eiichi Nakai; Gaku Sadasue. Pointwise multipliers on martingale Campanato spaces. Studia Mathematica, Tome 220 (2014) no. 1, pp. 87-100. doi: 10.4064/sm220-1-5

Cité par Sources :