$n$-supercyclic and strongly $n$-supercyclic operators in finite dimensions
Studia Mathematica, Tome 220 (2014) no. 1, pp. 15-53 Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences

Voir la notice de l'article

We prove that on $\mathbb{R}^N$, there is no $n$-supercyclic operator with $1\leq n \lfloor {(N+1)}/{2}\rfloor$, i.e. if $\mathbb{R}^N$ has an $n$-dimensional subspace whose orbit under $T\in\mathcal{L}(\mathbb{R}^N)$ is dense in $\mathbb{R}^N$, then $n$ is greater than $\lfloor{(N+1)}/{2}\rfloor$. Moreover, this value is optimal. We then consider the case of strongly $n$-supercyclic operators. An operator $T\in\mathcal{L}(\mathbb{R}^N)$ is strongly $n$-supercyclic if $\mathbb{R}^N$ has an $n$-dimensional subspace whose orbit under $T$ is dense in $\mathbb{P}_n(\mathbb{R}^N)$, the $n$th Grassmannian. We prove that strong $n$-supercyclicity does not occur non-trivially in finite dimensions.
DOI : 10.4064/sm220-1-2
Keywords: prove mathbb there n supercyclic operator leq lfloor rfloor mathbb has n dimensional subspace whose orbit under mathcal mathbb dense mathbb greater lfloor rfloor moreover value optimal consider strongly n supercyclic operators operator mathcal mathbb strongly n supercyclic mathbb has n dimensional subspace whose orbit under dense mathbb mathbb nth grassmannian prove strong n supercyclicity does occur non trivially finite dimensions

Romuald Ernst 1

1 Clermont Université, UniversitéBlaise Pascal Laboratoire de Mathématiques bp 10448, F-63000 Clermont-Ferrand, France and CNRS, UMR 6620 Laboratoire de Mathématiques F-63177 Aubière, France
@article{10_4064_sm220_1_2,
     author = {Romuald Ernst},
     title = {$n$-supercyclic and strongly $n$-supercyclic operators
 in finite dimensions},
     journal = {Studia Mathematica},
     pages = {15--53},
     year = {2014},
     volume = {220},
     number = {1},
     doi = {10.4064/sm220-1-2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm220-1-2/}
}
TY  - JOUR
AU  - Romuald Ernst
TI  - $n$-supercyclic and strongly $n$-supercyclic operators
 in finite dimensions
JO  - Studia Mathematica
PY  - 2014
SP  - 15
EP  - 53
VL  - 220
IS  - 1
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm220-1-2/
DO  - 10.4064/sm220-1-2
LA  - en
ID  - 10_4064_sm220_1_2
ER  - 
%0 Journal Article
%A Romuald Ernst
%T $n$-supercyclic and strongly $n$-supercyclic operators
 in finite dimensions
%J Studia Mathematica
%D 2014
%P 15-53
%V 220
%N 1
%U http://geodesic.mathdoc.fr/articles/10.4064/sm220-1-2/
%R 10.4064/sm220-1-2
%G en
%F 10_4064_sm220_1_2
Romuald Ernst. $n$-supercyclic and strongly $n$-supercyclic operators
 in finite dimensions. Studia Mathematica, Tome 220 (2014) no. 1, pp. 15-53. doi: 10.4064/sm220-1-2

Cité par Sources :