Time regularity and functions of the Volterra operator
Studia Mathematica, Tome 220 (2014) no. 1, pp. 1-14
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
Our aim is to prove that for any fixed $1/2 \alpha 1$ there exists a
Hilbert space contraction $T$ such that $\sigma(T) = \{1\}$ and
$$
\|T^{n+1} - T^n\| \asymp n^{-\alpha} \quad (n \geq 1).
$$
This answers Zemánek's question on the time regularity property.
Keywords:
prove fixed alpha there exists hilbert space contraction sigma asymp alpha quad geq answers zem neks question time regularity property
Affiliations des auteurs :
Zoltán Léka 1
@article{10_4064_sm220_1_1,
author = {Zolt\'an L\'eka},
title = {Time regularity and functions of the {Volterra} operator},
journal = {Studia Mathematica},
pages = {1--14},
year = {2014},
volume = {220},
number = {1},
doi = {10.4064/sm220-1-1},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm220-1-1/}
}
Zoltán Léka. Time regularity and functions of the Volterra operator. Studia Mathematica, Tome 220 (2014) no. 1, pp. 1-14. doi: 10.4064/sm220-1-1
Cité par Sources :