Time regularity and functions of the Volterra operator
Studia Mathematica, Tome 220 (2014) no. 1, pp. 1-14 Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences

Voir la notice de l'article

Our aim is to prove that for any fixed $1/2 \alpha 1$ there exists a Hilbert space contraction $T$ such that $\sigma(T) = \{1\}$ and $$ \|T^{n+1} - T^n\| \asymp n^{-\alpha} \quad (n \geq 1). $$ This answers Zemánek's question on the time regularity property.
DOI : 10.4064/sm220-1-1
Keywords: prove fixed alpha there exists hilbert space contraction sigma asymp alpha quad geq answers zem neks question time regularity property

Zoltán Léka 1

1 Department of Mathematics Ben Gurion University of the Negev P.O.B. 653 Beer Sheva 84105, Israel and Alfréd Rényi Institute of Mathematics Hungarian Academy of Sciences 13–15, Reáltanoda u. 1053 Budapest, Hungary
@article{10_4064_sm220_1_1,
     author = {Zolt\'an L\'eka},
     title = {Time regularity and functions of the {Volterra} operator},
     journal = {Studia Mathematica},
     pages = {1--14},
     year = {2014},
     volume = {220},
     number = {1},
     doi = {10.4064/sm220-1-1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm220-1-1/}
}
TY  - JOUR
AU  - Zoltán Léka
TI  - Time regularity and functions of the Volterra operator
JO  - Studia Mathematica
PY  - 2014
SP  - 1
EP  - 14
VL  - 220
IS  - 1
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm220-1-1/
DO  - 10.4064/sm220-1-1
LA  - en
ID  - 10_4064_sm220_1_1
ER  - 
%0 Journal Article
%A Zoltán Léka
%T Time regularity and functions of the Volterra operator
%J Studia Mathematica
%D 2014
%P 1-14
%V 220
%N 1
%U http://geodesic.mathdoc.fr/articles/10.4064/sm220-1-1/
%R 10.4064/sm220-1-1
%G en
%F 10_4064_sm220_1_1
Zoltán Léka. Time regularity and functions of the Volterra operator. Studia Mathematica, Tome 220 (2014) no. 1, pp. 1-14. doi: 10.4064/sm220-1-1

Cité par Sources :