On the distribution of random variables
corresponding to Musielak–Orlicz norms
Studia Mathematica, Tome 219 (2013) no. 3, pp. 269-287
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
Given a normalized Orlicz function $M$ we provide an easy formula for a distribution such that, if $X$ is a random variable distributed accordingly and $X_1,\ldots,X_n$ are independent copies of $X$, then
\[
\frac{1}{C_p} \|x\|_M \leq \mathbb E \|(x_iX_i)_{i=1}^n\|_p \leq C_p\|x\|_M,
\]
where $C_p$ is a positive constant depending only on $p$. In case $p=2$ we need the function $t\mapsto tM'(t) - M(t)$ to be $2$-concave and as an application immediately obtain an embedding of the corresponding Orlicz spaces into $L_1[0,1]$.
We also provide a general result replacing the $\ell_p$-norm by an arbitrary $N$-norm.
This complements some deep results obtained by Gordon, Litvak, Schütt, and Werner [Ann. Prob. 30 (2002)]. We also prove, in the spirit of that paper, a result which is of a simpler form and easier to apply. All results are true in the more general setting of Musielak–Orlicz spaces.
Keywords:
given normalized orlicz function provide easy formula distribution random variable distributed accordingly ldots independent copies frac leq mathbb leq where positive constant depending only function mapsto concave application immediately obtain embedding corresponding orlicz spaces provide general result replacing ell p norm arbitrary n norm complements deep results obtained gordon litvak sch werner ann prob prove spirit paper result which simpler form easier apply results general setting musielak orlicz spaces
Affiliations des auteurs :
David Alonso-Gutiérrez 1 ; Sören Christensen 2 ; Markus Passenbrunner 3 ; Joscha Prochno 3
@article{10_4064_sm219_3_6,
author = {David Alonso-Guti\'errez and S\"oren Christensen and Markus Passenbrunner and Joscha Prochno},
title = {On the distribution of random variables
corresponding to {Musielak{\textendash}Orlicz} norms},
journal = {Studia Mathematica},
pages = {269--287},
year = {2013},
volume = {219},
number = {3},
doi = {10.4064/sm219-3-6},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm219-3-6/}
}
TY - JOUR AU - David Alonso-Gutiérrez AU - Sören Christensen AU - Markus Passenbrunner AU - Joscha Prochno TI - On the distribution of random variables corresponding to Musielak–Orlicz norms JO - Studia Mathematica PY - 2013 SP - 269 EP - 287 VL - 219 IS - 3 UR - http://geodesic.mathdoc.fr/articles/10.4064/sm219-3-6/ DO - 10.4064/sm219-3-6 LA - en ID - 10_4064_sm219_3_6 ER -
%0 Journal Article %A David Alonso-Gutiérrez %A Sören Christensen %A Markus Passenbrunner %A Joscha Prochno %T On the distribution of random variables corresponding to Musielak–Orlicz norms %J Studia Mathematica %D 2013 %P 269-287 %V 219 %N 3 %U http://geodesic.mathdoc.fr/articles/10.4064/sm219-3-6/ %R 10.4064/sm219-3-6 %G en %F 10_4064_sm219_3_6
David Alonso-Gutiérrez; Sören Christensen; Markus Passenbrunner; Joscha Prochno. On the distribution of random variables corresponding to Musielak–Orlicz norms. Studia Mathematica, Tome 219 (2013) no. 3, pp. 269-287. doi: 10.4064/sm219-3-6
Cité par Sources :