On the distribution of random variables corresponding to Musielak–Orlicz norms
Studia Mathematica, Tome 219 (2013) no. 3, pp. 269-287 Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences

Voir la notice de l'article

Given a normalized Orlicz function $M$ we provide an easy formula for a distribution such that, if $X$ is a random variable distributed accordingly and $X_1,\ldots,X_n$ are independent copies of $X$, then \[ \frac{1}{C_p} \|x\|_M \leq \mathbb E \|(x_iX_i)_{i=1}^n\|_p \leq C_p\|x\|_M, \] where $C_p$ is a positive constant depending only on $p$. In case $p=2$ we need the function $t\mapsto tM'(t) - M(t)$ to be $2$-concave and as an application immediately obtain an embedding of the corresponding Orlicz spaces into $L_1[0,1]$. We also provide a general result replacing the $\ell_p$-norm by an arbitrary $N$-norm. This complements some deep results obtained by Gordon, Litvak, Schütt, and Werner [Ann. Prob. 30 (2002)]. We also prove, in the spirit of that paper, a result which is of a simpler form and easier to apply. All results are true in the more general setting of Musielak–Orlicz spaces.
DOI : 10.4064/sm219-3-6
Keywords: given normalized orlicz function provide easy formula distribution random variable distributed accordingly ldots independent copies frac leq mathbb leq where positive constant depending only function mapsto concave application immediately obtain embedding corresponding orlicz spaces provide general result replacing ell p norm arbitrary n norm complements deep results obtained gordon litvak sch werner ann prob prove spirit paper result which simpler form easier apply results general setting musielak orlicz spaces

David Alonso-Gutiérrez 1 ; Sören Christensen 2 ; Markus Passenbrunner 3 ; Joscha Prochno 3

1 Departamento de Matemáticas Universidad de Murcia Campus de Espinardo 30100 Murcia, Spain and Departament de Matemàtiques Universitat Jaume I Campus de Riu Sec E-12071 Castelló de la Plana, Spain
2 Mathematisches Seminar Christian Albrechts University Kiel Ludewig-Meyn-Strasse 4 24098 Kiel, Germany and Department of Mathematics SPST, University of Hamburg Bundesstrasse 55 20146 Hamburg, Germany
3 Institute of Analysis Johannes Kepler University Linz Altenbergerstrasse 69 4040 Linz, Austria
@article{10_4064_sm219_3_6,
     author = {David Alonso-Guti\'errez and S\"oren Christensen and Markus Passenbrunner and Joscha Prochno},
     title = {On the distribution of random variables
 corresponding to {Musielak{\textendash}Orlicz} norms},
     journal = {Studia Mathematica},
     pages = {269--287},
     year = {2013},
     volume = {219},
     number = {3},
     doi = {10.4064/sm219-3-6},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm219-3-6/}
}
TY  - JOUR
AU  - David Alonso-Gutiérrez
AU  - Sören Christensen
AU  - Markus Passenbrunner
AU  - Joscha Prochno
TI  - On the distribution of random variables
 corresponding to Musielak–Orlicz norms
JO  - Studia Mathematica
PY  - 2013
SP  - 269
EP  - 287
VL  - 219
IS  - 3
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm219-3-6/
DO  - 10.4064/sm219-3-6
LA  - en
ID  - 10_4064_sm219_3_6
ER  - 
%0 Journal Article
%A David Alonso-Gutiérrez
%A Sören Christensen
%A Markus Passenbrunner
%A Joscha Prochno
%T On the distribution of random variables
 corresponding to Musielak–Orlicz norms
%J Studia Mathematica
%D 2013
%P 269-287
%V 219
%N 3
%U http://geodesic.mathdoc.fr/articles/10.4064/sm219-3-6/
%R 10.4064/sm219-3-6
%G en
%F 10_4064_sm219_3_6
David Alonso-Gutiérrez; Sören Christensen; Markus Passenbrunner; Joscha Prochno. On the distribution of random variables
 corresponding to Musielak–Orlicz norms. Studia Mathematica, Tome 219 (2013) no. 3, pp. 269-287. doi: 10.4064/sm219-3-6

Cité par Sources :