The essential spectrum of Toeplitz tuples with
 symbols in $H^{\infty } + C$
    
    
  
  
  
      
      
      
        
Studia Mathematica, Tome 219 (2013) no. 3, pp. 237-246
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
            
              Let $H^2(D)$ be the Hardy space on a bounded strictly pseudoconvex domain $D \subset \mathbb C^n$ with smooth boundary. Using Gelfand theory and a spectral mapping theorem of Andersson and Sandberg (2003) for Toeplitz tuples with $H^{\infty }$-symbol, we show that a Toeplitz tuple $T_f = (T_{f_1}, \ldots , T_{f_m}) \in L(H^2(\sigma ))^m$ with symbols $f_i \in H^{\infty } + C$ is Fredholm if and only if the Poisson–Szegö extension of $f$ is bounded away from zero near the boundary of $D$. Corresponding results are obtained for the case of Bergman spaces. Thus we extend results of McDonald (1977) and Jewell (1980) to systems of Toeplitz operators.
            
            
            
          
        
      
                  
                    
                    
                    
                        
Keywords: 
hardy space bounded strictly pseudoconvex domain subset mathbb smooth boundary using gelfand theory spectral mapping theorem andersson sandberg toeplitz tuples infty symbol toeplitz tuple ldots sigma symbols infty fredholm only poisson szeg extension bounded away zero near boundary corresponding results obtained bergman spaces extend results mcdonald jewell systems toeplitz operators
                    
                    
                    
                  
                
                
                
                
                
                Affiliations des auteurs :
                
                
                  
                    
                
                
                
                
                
                
                
                
                
                
              Jörg Eschmeier 1
@article{10_4064_sm219_3_4,
     author = {J\"org Eschmeier},
     title = {The essential spectrum of {Toeplitz} tuples with
 symbols in $H^{\infty } + C$},
     journal = {Studia Mathematica},
     pages = {237--246},
     publisher = {mathdoc},
     volume = {219},
     number = {3},
     year = {2013},
     doi = {10.4064/sm219-3-4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm219-3-4/}
}
                      
                      
                    TY  - JOUR
AU  - Jörg Eschmeier
TI  - The essential spectrum of Toeplitz tuples with
 symbols in $H^{\infty } + C$
JO  - Studia Mathematica
PY  - 2013
SP  - 237
EP  - 246
VL  - 219
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm219-3-4/
DO  - 10.4064/sm219-3-4
LA  - en
ID  - 10_4064_sm219_3_4
ER  - 
                      
                      
                    Jörg Eschmeier. The essential spectrum of Toeplitz tuples with
 symbols in $H^{\infty } + C$. Studia Mathematica, Tome 219 (2013) no. 3, pp. 237-246. doi: 10.4064/sm219-3-4
                  
                Cité par Sources :
