1Department of Mathematics University of Arkansas Fayetteville, AR 72701, U.S.A. 2Department of Mathematics Bucknell University Lewisburg, PA 17837, U.S.A.
Studia Mathematica, Tome 219 (2013) no. 2, pp. 177-191
We construct an infinite uniform Frostman Blaschke product $B$ such that $B\circ B$ is also a uniform Frostman Blaschke product. We also show that the set of uniform Frostman Blaschke products is open in the set of inner functions with the uniform norm.
John R. Akeroyd 
1
;
Pamela Gorkin 
2
1
Department of Mathematics University of Arkansas Fayetteville, AR 72701, U.S.A.
2
Department of Mathematics Bucknell University Lewisburg, PA 17837, U.S.A.
@article{10_4064_sm219_2_7,
author = {John R. Akeroyd and Pamela Gorkin},
title = {On the composition of {Frostman} {Blaschke} products},
journal = {Studia Mathematica},
pages = {177--191},
year = {2013},
volume = {219},
number = {2},
doi = {10.4064/sm219-2-7},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm219-2-7/}
}
TY - JOUR
AU - John R. Akeroyd
AU - Pamela Gorkin
TI - On the composition of Frostman Blaschke products
JO - Studia Mathematica
PY - 2013
SP - 177
EP - 191
VL - 219
IS - 2
UR - http://geodesic.mathdoc.fr/articles/10.4064/sm219-2-7/
DO - 10.4064/sm219-2-7
LA - en
ID - 10_4064_sm219_2_7
ER -
%0 Journal Article
%A John R. Akeroyd
%A Pamela Gorkin
%T On the composition of Frostman Blaschke products
%J Studia Mathematica
%D 2013
%P 177-191
%V 219
%N 2
%U http://geodesic.mathdoc.fr/articles/10.4064/sm219-2-7/
%R 10.4064/sm219-2-7
%G en
%F 10_4064_sm219_2_7
John R. Akeroyd; Pamela Gorkin. On the composition of Frostman Blaschke products. Studia Mathematica, Tome 219 (2013) no. 2, pp. 177-191. doi: 10.4064/sm219-2-7