On the composition of Frostman Blaschke products
Studia Mathematica, Tome 219 (2013) no. 2, pp. 177-191
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
We construct an infinite uniform Frostman Blaschke product $B$ such that $B\circ B$ is also a uniform Frostman Blaschke product. We also show that the set of uniform Frostman Blaschke products is open in the set of inner functions with the uniform norm.
Keywords:
construct infinite uniform frostman blaschke product circ uniform frostman blaschke product set uniform frostman blaschke products set inner functions uniform norm
Affiliations des auteurs :
John R. Akeroyd 1 ; Pamela Gorkin 2
@article{10_4064_sm219_2_7,
author = {John R. Akeroyd and Pamela Gorkin},
title = {On the composition of {Frostman} {Blaschke} products},
journal = {Studia Mathematica},
pages = {177--191},
publisher = {mathdoc},
volume = {219},
number = {2},
year = {2013},
doi = {10.4064/sm219-2-7},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm219-2-7/}
}
TY - JOUR AU - John R. Akeroyd AU - Pamela Gorkin TI - On the composition of Frostman Blaschke products JO - Studia Mathematica PY - 2013 SP - 177 EP - 191 VL - 219 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/sm219-2-7/ DO - 10.4064/sm219-2-7 LA - en ID - 10_4064_sm219_2_7 ER -
John R. Akeroyd; Pamela Gorkin. On the composition of Frostman Blaschke products. Studia Mathematica, Tome 219 (2013) no. 2, pp. 177-191. doi: 10.4064/sm219-2-7
Cité par Sources :