Lineability and spaceability on vector-measure spaces
Studia Mathematica, Tome 219 (2013) no. 2, pp. 155-161 Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences

Voir la notice de l'article

It is proved that if $X$ is infinite-dimensional, then there exists an infinite-dimensional space of $X$-valued measures which have infinite variation on sets of positive Lebesgue measure. In term of spaceability, it is also shown that $ca(\mathcal {B}, \lambda , X) \setminus M_\sigma $, the measures with non-$\sigma $-finite variation, contains a closed subspace. Other considerations concern the space of vector measures whose range is neither closed nor convex. All of those results extend in some sense theorems of Muñoz Fernández et al. [Linear Algebra Appl. 428 (2008)].
DOI : 10.4064/sm219-2-5
Keywords: proved infinite dimensional there exists infinite dimensional space x valued measures which have infinite variation sets positive lebesgue measure term spaceability shown mathcal lambda setminus sigma measures non sigma finite variation contains closed subspace other considerations concern space vector measures whose range neither closed nor convex those results extend sense theorems fern ndez linear algebra appl

Giuseppina Barbieri 1 ; Francisco J. García-Pacheco 2 ; Daniele Puglisi 3

1 Dipartimento di Matematica e Informatica Università di Udine 33100 Udine, Italy
2 Department of Mathematical Sciences University of Cadiz Puerto Real 11510, Spain
3 Department of Mathematics and Computer Sciences University of Catania 95125, Catania, Italy
@article{10_4064_sm219_2_5,
     author = {Giuseppina Barbieri and Francisco J. Garc{\'\i}a-Pacheco and Daniele Puglisi},
     title = {Lineability and spaceability on vector-measure spaces},
     journal = {Studia Mathematica},
     pages = {155--161},
     year = {2013},
     volume = {219},
     number = {2},
     doi = {10.4064/sm219-2-5},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm219-2-5/}
}
TY  - JOUR
AU  - Giuseppina Barbieri
AU  - Francisco J. García-Pacheco
AU  - Daniele Puglisi
TI  - Lineability and spaceability on vector-measure spaces
JO  - Studia Mathematica
PY  - 2013
SP  - 155
EP  - 161
VL  - 219
IS  - 2
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm219-2-5/
DO  - 10.4064/sm219-2-5
LA  - en
ID  - 10_4064_sm219_2_5
ER  - 
%0 Journal Article
%A Giuseppina Barbieri
%A Francisco J. García-Pacheco
%A Daniele Puglisi
%T Lineability and spaceability on vector-measure spaces
%J Studia Mathematica
%D 2013
%P 155-161
%V 219
%N 2
%U http://geodesic.mathdoc.fr/articles/10.4064/sm219-2-5/
%R 10.4064/sm219-2-5
%G en
%F 10_4064_sm219_2_5
Giuseppina Barbieri; Francisco J. García-Pacheco; Daniele Puglisi. Lineability and spaceability on vector-measure spaces. Studia Mathematica, Tome 219 (2013) no. 2, pp. 155-161. doi: 10.4064/sm219-2-5

Cité par Sources :