Necessary and sufficient Tauberian conditions for
the logarithmic summability of functions and sequences
Studia Mathematica, Tome 219 (2013) no. 2, pp. 109-121
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
Let $s: [1, \infty) \to \mathbb C$ be a locally Lebesgue integrable function.
We say that $s$ is summable $(L, 1)$ if there exists some $A\in \mathbb C$ such that
\begin{equation}
\lim_{t\to \infty} \tau(t) = A, \quad {\rm where} \quad \tau(t):= {1\over \log t}
\int^t_1 {s(u) \over u}\, du.\tag{$*$}\end{equation}
It is clear that if the ordinary limit $s(t) \to A$ exists, then also
$\tau(t) \to A$ as $t\to \infty$.
We present sufficient conditions, which are also necessary, in order that the converse implication
hold true. As corollaries, we obtain so-called Tauberian theorems which are analogous to
those known in the case of summability $(C,1)$.
For example, if the function $s$ is slowly oscillating, by which we mean that for every $\varepsilon>0$ there exist
$t_0 = t_0 (\varepsilon) > 1$ and $\lambda=\lambda(\varepsilon) > 1$ such that
$$
|s(u) - s(t)| \le \varepsilon \quad {\rm whenever}\quad t_0 \le t u \le t^\lambda,
$$
then the converse implication holds true: the ordinary
convergence $\lim_{t\to \infty} s(t) = A$ follows from ($*$).We also present necessary and sufficient Tauberian conditions under which
the ordinary convergence of a numerical sequence $(s_k)$ follows from its logarithmic summability. Furthermore, we give a more transparent proof of an earlier Tauberian theorem due to Kwee.
Keywords:
infty mathbb locally lebesgue integrable function say summable there exists mathbb begin equation lim infty tau quad where quad tau log int tag * end equation clear ordinary limit exists tau infty present sufficient conditions which necessary order converse implication corollaries obtain so called tauberian theorems which analogous those known summability example function slowly oscillating which mean every varepsilon there exist varepsilon lambda lambda varepsilon varepsilon quad whenever quad lambda converse implication holds ordinary convergence lim infty follows nbsp * present necessary sufficient tauberian conditions under which ordinary convergence numerical sequence follows its logarithmic summability furthermore transparent proof earlier tauberian theorem due kwee
Affiliations des auteurs :
Ferenc Móricz 1
@article{10_4064_sm219_2_2,
author = {Ferenc M\'oricz},
title = {Necessary and sufficient {Tauberian} conditions for
the logarithmic summability of functions and sequences},
journal = {Studia Mathematica},
pages = {109--121},
publisher = {mathdoc},
volume = {219},
number = {2},
year = {2013},
doi = {10.4064/sm219-2-2},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm219-2-2/}
}
TY - JOUR AU - Ferenc Móricz TI - Necessary and sufficient Tauberian conditions for the logarithmic summability of functions and sequences JO - Studia Mathematica PY - 2013 SP - 109 EP - 121 VL - 219 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/sm219-2-2/ DO - 10.4064/sm219-2-2 LA - en ID - 10_4064_sm219_2_2 ER -
%0 Journal Article %A Ferenc Móricz %T Necessary and sufficient Tauberian conditions for the logarithmic summability of functions and sequences %J Studia Mathematica %D 2013 %P 109-121 %V 219 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.4064/sm219-2-2/ %R 10.4064/sm219-2-2 %G en %F 10_4064_sm219_2_2
Ferenc Móricz. Necessary and sufficient Tauberian conditions for the logarithmic summability of functions and sequences. Studia Mathematica, Tome 219 (2013) no. 2, pp. 109-121. doi: 10.4064/sm219-2-2
Cité par Sources :