Geometric characterization of $L_{1}$-spaces
Studia Mathematica, Tome 219 (2013) no. 2, pp. 97-107
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
The paper is devoted to a description of all real strongly facially symmetric spaces which are isometrically isomorphic to $L_1$-spaces. We prove that if $Z$ is a real neutral strongly facially symmetric space such that every maximal geometric tripotent from the dual space of $Z$ is unitary, then the space $Z$ is isometrically isomorphic to the space $L_1(\Omega , \Sigma , \mu ),$ where $(\Omega , \Sigma , \mu )$ is an appropriate measure space having the direct sum property.
Keywords:
paper devoted description real strongly facially symmetric spaces which isometrically isomorphic spaces prove real neutral strongly facially symmetric space every maximal geometric tripotent dual space unitary space isometrically isomorphic space omega sigma where omega sigma appropriate measure space having direct sum property
Affiliations des auteurs :
Normuxammad Yadgorov 1 ; Mukhtar Ibragimov 2 ; Karimbergen Kudaybergenov 2
@article{10_4064_sm219_2_1,
author = {Normuxammad Yadgorov and Mukhtar Ibragimov and Karimbergen Kudaybergenov},
title = {Geometric characterization of $L_{1}$-spaces},
journal = {Studia Mathematica},
pages = {97--107},
publisher = {mathdoc},
volume = {219},
number = {2},
year = {2013},
doi = {10.4064/sm219-2-1},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm219-2-1/}
}
TY - JOUR
AU - Normuxammad Yadgorov
AU - Mukhtar Ibragimov
AU - Karimbergen Kudaybergenov
TI - Geometric characterization of $L_{1}$-spaces
JO - Studia Mathematica
PY - 2013
SP - 97
EP - 107
VL - 219
IS - 2
PB - mathdoc
UR - http://geodesic.mathdoc.fr/articles/10.4064/sm219-2-1/
DO - 10.4064/sm219-2-1
LA - en
ID - 10_4064_sm219_2_1
ER -
%0 Journal Article
%A Normuxammad Yadgorov
%A Mukhtar Ibragimov
%A Karimbergen Kudaybergenov
%T Geometric characterization of $L_{1}$-spaces
%J Studia Mathematica
%D 2013
%P 97-107
%V 219
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/sm219-2-1/
%R 10.4064/sm219-2-1
%G en
%F 10_4064_sm219_2_1
Normuxammad Yadgorov; Mukhtar Ibragimov; Karimbergen Kudaybergenov. Geometric characterization of $L_{1}$-spaces. Studia Mathematica, Tome 219 (2013) no. 2, pp. 97-107. doi: 10.4064/sm219-2-1
Cité par Sources :