1Department of Mathematics Purdue University 150 N. University St. West Lafayette, IN 47907, U.S.A. 2Institute of Mathematics Wrocław University Pl. Grunwaldzki 2/4 50-384 Wrocław, Poland
Studia Mathematica, Tome 219 (2013) no. 1, pp. 69-96
Let $S$ be a semidirect product $S=N\rtimes A$
where $N$ is a connected and simply connected, non-abelian,
nilpotent meta-abelian Lie group and $A$ is isomorphic to $\mathbb{R}^k,$$k>1.$ We consider a class of second order
left-invariant differential operators on $S$ of the form $\mathcal
L_\alpha=L^a+\varDelta_\alpha,$ where $\alpha\in\mathbb{R}^k,$ and
for each $a\in\mathbb{R}^k,$$L^a$ is left-invariant second order
differential operator on $N$ and
$\varDelta_\alpha=\varDelta-\langle\alpha,\nabla\rangle,$ where
$\varDelta$ is the usual Laplacian on $\mathbb{R}^k.$ Using some
probabilistic techniques (e.g., skew-product formulas for
diffusions on $S$ and $N$ respectively) we obtain an upper
estimate for the transition probabilities of the evolution on $N$
generated by $L^{\sigma(t)},$ where $\sigma$ is a continuous
function from $[0,\infty)$ to $\mathbb R^k.$ We also give an upper bound
for the Poisson kernel for $\mathcal L_\alpha.$
Keywords:
semidirect product rtimes where connected simply connected non abelian nilpotent meta abelian lie group isomorphic mathbb consider class second order left invariant differential operators form mathcal alpha vardelta alpha where alpha mathbb each mathbb left invariant second order differential operator vardelta alpha vardelta langle alpha nabla rangle where vardelta usual laplacian mathbb using probabilistic techniques skew product formulas diffusions respectively obtain upper estimate transition probabilities evolution generated sigma where sigma continuous function infty mathbb upper bound poisson kernel mathcal alpha
Affiliations des auteurs :
Richard Penney 
1
;
Roman Urban 
2
1
Department of Mathematics Purdue University 150 N. University St. West Lafayette, IN 47907, U.S.A.
2
Institute of Mathematics Wrocław University Pl. Grunwaldzki 2/4 50-384 Wrocław, Poland
@article{10_4064_sm219_1_4,
author = {Richard Penney and Roman Urban},
title = {The evolution and {Poisson} kernels on nilpotent meta-abelian groups},
journal = {Studia Mathematica},
pages = {69--96},
year = {2013},
volume = {219},
number = {1},
doi = {10.4064/sm219-1-4},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm219-1-4/}
}
TY - JOUR
AU - Richard Penney
AU - Roman Urban
TI - The evolution and Poisson kernels on nilpotent meta-abelian groups
JO - Studia Mathematica
PY - 2013
SP - 69
EP - 96
VL - 219
IS - 1
UR - http://geodesic.mathdoc.fr/articles/10.4064/sm219-1-4/
DO - 10.4064/sm219-1-4
LA - en
ID - 10_4064_sm219_1_4
ER -
%0 Journal Article
%A Richard Penney
%A Roman Urban
%T The evolution and Poisson kernels on nilpotent meta-abelian groups
%J Studia Mathematica
%D 2013
%P 69-96
%V 219
%N 1
%U http://geodesic.mathdoc.fr/articles/10.4064/sm219-1-4/
%R 10.4064/sm219-1-4
%G en
%F 10_4064_sm219_1_4
Richard Penney; Roman Urban. The evolution and Poisson kernels on nilpotent meta-abelian groups. Studia Mathematica, Tome 219 (2013) no. 1, pp. 69-96. doi: 10.4064/sm219-1-4