The evolution and Poisson kernels on nilpotent meta-abelian groups
Studia Mathematica, Tome 219 (2013) no. 1, pp. 69-96
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
Let $S$ be a semidirect product $S=N\rtimes A$
where $N$ is a connected and simply connected, non-abelian,
nilpotent meta-abelian Lie group and $A$ is isomorphic to $\mathbb{R}^k,$ $k>1.$ We consider a class of second order
left-invariant differential operators on $S$ of the form $\mathcal
L_\alpha=L^a+\varDelta_\alpha,$ where $\alpha\in\mathbb{R}^k,$ and
for each $a\in\mathbb{R}^k,$ $L^a$ is left-invariant second order
differential operator on $N$ and
$\varDelta_\alpha=\varDelta-\langle\alpha,\nabla\rangle,$ where
$\varDelta$ is the usual Laplacian on $\mathbb{R}^k.$ Using some
probabilistic techniques (e.g., skew-product formulas for
diffusions on $S$ and $N$ respectively) we obtain an upper
estimate for the transition probabilities of the evolution on $N$
generated by $L^{\sigma(t)},$ where $\sigma$ is a continuous
function from $[0,\infty)$ to $\mathbb R^k.$ We also give an upper bound
for the Poisson kernel for $\mathcal L_\alpha.$
Keywords:
semidirect product rtimes where connected simply connected non abelian nilpotent meta abelian lie group isomorphic mathbb consider class second order left invariant differential operators form mathcal alpha vardelta alpha where alpha mathbb each mathbb left invariant second order differential operator vardelta alpha vardelta langle alpha nabla rangle where vardelta usual laplacian mathbb using probabilistic techniques skew product formulas diffusions respectively obtain upper estimate transition probabilities evolution generated sigma where sigma continuous function infty mathbb upper bound poisson kernel mathcal alpha
Affiliations des auteurs :
Richard Penney 1 ; Roman Urban 2
@article{10_4064_sm219_1_4,
author = {Richard Penney and Roman Urban},
title = {The evolution and {Poisson} kernels on nilpotent meta-abelian groups},
journal = {Studia Mathematica},
pages = {69--96},
publisher = {mathdoc},
volume = {219},
number = {1},
year = {2013},
doi = {10.4064/sm219-1-4},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm219-1-4/}
}
TY - JOUR AU - Richard Penney AU - Roman Urban TI - The evolution and Poisson kernels on nilpotent meta-abelian groups JO - Studia Mathematica PY - 2013 SP - 69 EP - 96 VL - 219 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/sm219-1-4/ DO - 10.4064/sm219-1-4 LA - en ID - 10_4064_sm219_1_4 ER -
Richard Penney; Roman Urban. The evolution and Poisson kernels on nilpotent meta-abelian groups. Studia Mathematica, Tome 219 (2013) no. 1, pp. 69-96. doi: 10.4064/sm219-1-4
Cité par Sources :