1Institute of Mathematics Polish Academy of Sciences Śniadeckich 8 00-956 Warszawa, Poland 2Mathematical Sciences University of Gothenburg and Mathematical Sciences Chalmers University of Technology SE-412 96 Göteborg, Sweden
Studia Mathematica, Tome 218 (2013) no. 3, pp. 219-244
The heat kernel associated with the setting of the classical Jacobi polynomials is defined by an oscillatory sum which cannot be computed explicitly, in contrast to the situation for the other two classical systems of orthogonal polynomials. We deduce sharp estimates giving the order of magnitude of this kernel, for type parameters $\alpha ,\beta \ge -1/2$. Using quite different methods, Coulhon, Kerkyacharian and Petrushev recently also obtained such estimates. As an application of the bounds, we show that the maximal operator of the multi-dimensional Jacobi heat semigroup satisfies a weak type $(1,1)$ inequality. We also obtain sharp estimates of the Poisson–Jacobi kernel.
Keywords:
heat kernel associated setting classical jacobi polynomials defined oscillatory sum which cannot computed explicitly contrast situation other classical systems orthogonal polynomials deduce sharp estimates giving order magnitude kernel type parameters alpha beta using quite different methods coulhon kerkyacharian petrushev recently obtained estimates application bounds maximal operator multi dimensional jacobi heat semigroup satisfies weak type inequality obtain sharp estimates poisson jacobi kernel
Affiliations des auteurs :
Adam Nowak 
1
;
Peter Sjögren 
2
1
Institute of Mathematics Polish Academy of Sciences Śniadeckich 8 00-956 Warszawa, Poland
2
Mathematical Sciences University of Gothenburg and Mathematical Sciences Chalmers University of Technology SE-412 96 Göteborg, Sweden
@article{10_4064_sm218_3_2,
author = {Adam Nowak and Peter Sj\"ogren},
title = {Sharp estimates of the {Jacobi} heat kernel},
journal = {Studia Mathematica},
pages = {219--244},
year = {2013},
volume = {218},
number = {3},
doi = {10.4064/sm218-3-2},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm218-3-2/}
}
TY - JOUR
AU - Adam Nowak
AU - Peter Sjögren
TI - Sharp estimates of the Jacobi heat kernel
JO - Studia Mathematica
PY - 2013
SP - 219
EP - 244
VL - 218
IS - 3
UR - http://geodesic.mathdoc.fr/articles/10.4064/sm218-3-2/
DO - 10.4064/sm218-3-2
LA - en
ID - 10_4064_sm218_3_2
ER -
%0 Journal Article
%A Adam Nowak
%A Peter Sjögren
%T Sharp estimates of the Jacobi heat kernel
%J Studia Mathematica
%D 2013
%P 219-244
%V 218
%N 3
%U http://geodesic.mathdoc.fr/articles/10.4064/sm218-3-2/
%R 10.4064/sm218-3-2
%G en
%F 10_4064_sm218_3_2
Adam Nowak; Peter Sjögren. Sharp estimates of the Jacobi heat kernel. Studia Mathematica, Tome 218 (2013) no. 3, pp. 219-244. doi: 10.4064/sm218-3-2