1Department of Mathematics Purdue University West Lafayette, IN 47907, U.S.A. 2Department of Applied Mathematics National Sun Yat-sen University Kaohsiung, 80424, Taiwan, R.O.C.
Studia Mathematica, Tome 218 (2013) no. 3, pp. 189-217
Let $L$ be a norm closed left ideal of a $C^*$-algebra $A$. Then the left quotient $A/L$ is a left $A$-module. In this paper, we shall implement Tomita's idea about representing elements of $A$ as left multiplications: $\pi _p(a)(b+L)=ab+L$. A complete characterization of bounded endomorphisms of the $A$-module $A/L$ is given. The double commutant $\pi _p(A)''$ of $\pi _p(A)$ in $B(A/L)$ is described. Density theorems of von Neumann and Kaplansky type are obtained. Finally, a comprehensive study of relative multipliers of $A$ is carried out.
Keywords:
norm closed ideal * algebra quotient a module paper shall implement tomitas idea about representing elements multiplications complete characterization bounded endomorphisms a module given double commutant described density theorems von neumann kaplansky type obtained finally comprehensive study relative multipliers carried out
Affiliations des auteurs :
Lawrence G. Brown 
1
;
Ngai-Ching Wong 
2
1
Department of Mathematics Purdue University West Lafayette, IN 47907, U.S.A.
2
Department of Applied Mathematics National Sun Yat-sen University Kaohsiung, 80424, Taiwan, R.O.C.
@article{10_4064_sm218_3_1,
author = {Lawrence G. Brown and Ngai-Ching Wong},
title = {Left quotients of a $C^*$-algebra, {III:} {Operators} on left quotients},
journal = {Studia Mathematica},
pages = {189--217},
year = {2013},
volume = {218},
number = {3},
doi = {10.4064/sm218-3-1},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm218-3-1/}
}
TY - JOUR
AU - Lawrence G. Brown
AU - Ngai-Ching Wong
TI - Left quotients of a $C^*$-algebra, III: Operators on left quotients
JO - Studia Mathematica
PY - 2013
SP - 189
EP - 217
VL - 218
IS - 3
UR - http://geodesic.mathdoc.fr/articles/10.4064/sm218-3-1/
DO - 10.4064/sm218-3-1
LA - en
ID - 10_4064_sm218_3_1
ER -
%0 Journal Article
%A Lawrence G. Brown
%A Ngai-Ching Wong
%T Left quotients of a $C^*$-algebra, III: Operators on left quotients
%J Studia Mathematica
%D 2013
%P 189-217
%V 218
%N 3
%U http://geodesic.mathdoc.fr/articles/10.4064/sm218-3-1/
%R 10.4064/sm218-3-1
%G en
%F 10_4064_sm218_3_1
Lawrence G. Brown; Ngai-Ching Wong. Left quotients of a $C^*$-algebra, III: Operators on left quotients. Studia Mathematica, Tome 218 (2013) no. 3, pp. 189-217. doi: 10.4064/sm218-3-1