Generic linear cocycles over a minimal base
Studia Mathematica, Tome 218 (2013) no. 2, pp. 167-188
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
We prove that a generic linear cocycle over a minimal base dynamics of finite dimension has the property that the Oseledets splitting with respect to any invariant probability coincides almost everywhere with the finest dominated splitting. Therefore the restriction of the generic cocycle to a subbundle of the finest dominated splitting is uniformly subexponentially quasiconformal. This extends a previous result for $\mathrm {SL}(2,\mathbb {R})$-cocycles due to Avila and the author.
Keywords:
prove generic linear cocycle minimal base dynamics finite dimension has property oseledets splitting respect invariant probability coincides almost everywhere finest dominated splitting therefore restriction generic cocycle subbundle finest dominated splitting uniformly subexponentially quasiconformal extends previous result mathrm mathbb cocycles due avila author
Affiliations des auteurs :
Jairo Bochi  1
@article{10_4064_sm218_2_4,
author = {Jairo Bochi},
title = {Generic linear cocycles over a minimal base},
journal = {Studia Mathematica},
pages = {167--188},
year = {2013},
volume = {218},
number = {2},
doi = {10.4064/sm218-2-4},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm218-2-4/}
}
Jairo Bochi. Generic linear cocycles over a minimal base. Studia Mathematica, Tome 218 (2013) no. 2, pp. 167-188. doi: 10.4064/sm218-2-4
Cité par Sources :