Generic linear cocycles over a minimal base
Studia Mathematica, Tome 218 (2013) no. 2, pp. 167-188

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We prove that a generic linear cocycle over a minimal base dynamics of finite dimension has the property that the Oseledets splitting with respect to any invariant probability coincides almost everywhere with the finest dominated splitting. Therefore the restriction of the generic cocycle to a subbundle of the finest dominated splitting is uniformly subexponentially quasiconformal. This extends a previous result for $\mathrm {SL}(2,\mathbb {R})$-cocycles due to Avila and the author.
DOI : 10.4064/sm218-2-4
Keywords: prove generic linear cocycle minimal base dynamics finite dimension has property oseledets splitting respect invariant probability coincides almost everywhere finest dominated splitting therefore restriction generic cocycle subbundle finest dominated splitting uniformly subexponentially quasiconformal extends previous result mathrm mathbb cocycles due avila author

Jairo Bochi 1

1 Departamento de Matemática Pontifícia Universidade Católica do Rio de Janeiro (PUC–Rio) Rio de Janeiro 22451-900, Brazil
@article{10_4064_sm218_2_4,
     author = {Jairo Bochi},
     title = {Generic linear cocycles over a minimal base},
     journal = {Studia Mathematica},
     pages = {167--188},
     publisher = {mathdoc},
     volume = {218},
     number = {2},
     year = {2013},
     doi = {10.4064/sm218-2-4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm218-2-4/}
}
TY  - JOUR
AU  - Jairo Bochi
TI  - Generic linear cocycles over a minimal base
JO  - Studia Mathematica
PY  - 2013
SP  - 167
EP  - 188
VL  - 218
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm218-2-4/
DO  - 10.4064/sm218-2-4
LA  - en
ID  - 10_4064_sm218_2_4
ER  - 
%0 Journal Article
%A Jairo Bochi
%T Generic linear cocycles over a minimal base
%J Studia Mathematica
%D 2013
%P 167-188
%V 218
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/sm218-2-4/
%R 10.4064/sm218-2-4
%G en
%F 10_4064_sm218_2_4
Jairo Bochi. Generic linear cocycles over a minimal base. Studia Mathematica, Tome 218 (2013) no. 2, pp. 167-188. doi: 10.4064/sm218-2-4

Cité par Sources :