On the algebra of smooth operators
Studia Mathematica, Tome 218 (2013) no. 2, pp. 145-166

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Let $s$ be the space of rapidly decreasing sequences. We give the spectral representation of normal elements in the Fréchet algebra $L(s',s)$ of so-called smooth operators. We also characterize closed commutative ${}^*$-subalgebras of $L(s',s)$ and establish a Hölder continuous functional calculus in this algebra. The key tool is the property (DN) of $s$.
DOI : 10.4064/sm218-2-3
Keywords: space rapidly decreasing sequences spectral representation normal elements chet algebra so called smooth operators characterize closed commutative * subalgebras establish nbsp lder continuous functional calculus algebra key tool property

Tomasz Ciaś 1

1 Faculty of Mathematics and Computer Science A. Mickiewicz University in Poznań Umultowska 87 61-614 Poznań, Poland
@article{10_4064_sm218_2_3,
     author = {Tomasz Cia\'s},
     title = {On the algebra of smooth operators},
     journal = {Studia Mathematica},
     pages = {145--166},
     publisher = {mathdoc},
     volume = {218},
     number = {2},
     year = {2013},
     doi = {10.4064/sm218-2-3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm218-2-3/}
}
TY  - JOUR
AU  - Tomasz Ciaś
TI  - On the algebra of smooth operators
JO  - Studia Mathematica
PY  - 2013
SP  - 145
EP  - 166
VL  - 218
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm218-2-3/
DO  - 10.4064/sm218-2-3
LA  - en
ID  - 10_4064_sm218_2_3
ER  - 
%0 Journal Article
%A Tomasz Ciaś
%T On the algebra of smooth operators
%J Studia Mathematica
%D 2013
%P 145-166
%V 218
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/sm218-2-3/
%R 10.4064/sm218-2-3
%G en
%F 10_4064_sm218_2_3
Tomasz Ciaś. On the algebra of smooth operators. Studia Mathematica, Tome 218 (2013) no. 2, pp. 145-166. doi: 10.4064/sm218-2-3

Cité par Sources :