Preconditioners and Korovkin-type theorems for infinite-dimensional bounded linear operators via completely positive maps
Studia Mathematica, Tome 218 (2013) no. 2, pp. 95-118

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

The classical as well as noncommutative Korovkin-type theorems deal with the convergence of positive linear maps with respect to different modes of convergence, like norm or weak operator convergence etc. In this article, new versions of Korovkin-type theorems are proved using the notions of convergence induced by strong, weak and uniform eigenvalue clustering of matrix sequences with growing order. Such modes of convergence were originally considered for the special case of Toeplitz matrices and indeed the Korovkin-type approach, in the setting of preconditioning large linear systems with Toeplitz structure, is well known. Here we extend this finite-dimensional approach to the infinite-dimensional context of operators acting on separable Hilbert spaces. The asymptotics of these preconditioners are evaluated and analyzed using the concept of completely positive maps. It is observed that any two limit points, under Kadison's BW-topology, of the same sequence of preconditioners are equal modulo compact operators. Moreover, this indicates the role of preconditioners in the spectral approximation of bounded self-adjoint operators.
DOI : 10.4064/sm218-2-1
Keywords: classical noncommutative korovkin type theorems convergence positive linear maps respect different modes convergence norm weak operator convergence etc article versions korovkin type theorems proved using notions convergence induced strong weak uniform eigenvalue clustering matrix sequences growing order modes convergence originally considered special toeplitz matrices indeed korovkin type approach setting preconditioning large linear systems toeplitz structure known here extend finite dimensional approach infinite dimensional context operators acting separable hilbert spaces asymptotics these preconditioners evaluated analyzed using concept completely positive maps observed limit points under kadisons bw topology sequence preconditioners equal modulo compact operators moreover indicates role preconditioners spectral approximation bounded self adjoint operators

K. Kumar 1 ; M. N. N. Namboodiri 1 ; S. Serra-Capizzano 2

1 Department of Mathematics “CUSAT” Cochin, India
2 Department of Science and High Technology Università Insubria, Como Campus via Valleggio 11 22100 Como, Italy
@article{10_4064_sm218_2_1,
     author = {K. Kumar and M. N. N. Namboodiri and S. Serra-Capizzano},
     title = {Preconditioners and {Korovkin-type} theorems
 for infinite-dimensional bounded linear operators
 via completely positive maps},
     journal = {Studia Mathematica},
     pages = {95--118},
     publisher = {mathdoc},
     volume = {218},
     number = {2},
     year = {2013},
     doi = {10.4064/sm218-2-1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm218-2-1/}
}
TY  - JOUR
AU  - K. Kumar
AU  - M. N. N. Namboodiri
AU  - S. Serra-Capizzano
TI  - Preconditioners and Korovkin-type theorems
 for infinite-dimensional bounded linear operators
 via completely positive maps
JO  - Studia Mathematica
PY  - 2013
SP  - 95
EP  - 118
VL  - 218
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm218-2-1/
DO  - 10.4064/sm218-2-1
LA  - en
ID  - 10_4064_sm218_2_1
ER  - 
%0 Journal Article
%A K. Kumar
%A M. N. N. Namboodiri
%A S. Serra-Capizzano
%T Preconditioners and Korovkin-type theorems
 for infinite-dimensional bounded linear operators
 via completely positive maps
%J Studia Mathematica
%D 2013
%P 95-118
%V 218
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/sm218-2-1/
%R 10.4064/sm218-2-1
%G en
%F 10_4064_sm218_2_1
K. Kumar; M. N. N. Namboodiri; S. Serra-Capizzano. Preconditioners and Korovkin-type theorems
 for infinite-dimensional bounded linear operators
 via completely positive maps. Studia Mathematica, Tome 218 (2013) no. 2, pp. 95-118. doi: 10.4064/sm218-2-1

Cité par Sources :