1Department of Mathematics and Mechanics Samara State University Acad. Pavlova 1 443011 Samara, Russia 2Department of Engineering Sciences and Mathematics Luleå University of Technology SE-971 87 Luleå, Sweden 3Department of Mathematical and Statistical Sciences University of Alberta Edmonton, AB T6G2G1, Canada
Studia Mathematica, Tome 218 (2013) no. 1, pp. 55-88
Some new examples of $K$-monotone couples of the type $(X, X(w))$, where $X$ is a symmetric space on $[0, 1]$ and $w$ is a weight on $[0, 1]$, are presented. Based on the property of $w$-decomposability of a symmetric space we show that, if a weight $w$ changes sufficiently fast, all symmetric spaces $X$ with non-trivial Boyd indices such that the Banach couple $(X, X(w))$ is $K$-monotone belong to the class of ultrasymmetric Orlicz spaces. If, in addition, the fundamental function of $X$ is $t^{1/p}$ for some $p \in [1, \infty ]$, then $X = L_p$. At the same time a Banach couple $(X, X(w))$ may be $K$-monotone for some non-trivial $w$ in the case when $X$ is not ultrasymmetric. In each of the cases where $X$ is a Lorentz, Marcinkiewicz or Orlicz space, we find conditions which guarantee that $(X, X(w))$ is $K$-monotone.
Keywords:
examples k monotone couples type where symmetric space weight presented based property w decomposability symmetric space weight changes sufficiently fast symmetric spaces non trivial boyd indices banach couple k monotone belong class ultrasymmetric orlicz spaces addition fundamental function infty time banach couple may k monotone non trivial ultrasymmetric each cases where lorentz marcinkiewicz orlicz space conditions which guarantee k monotone
Affiliations des auteurs :
Sergey V. Astashkin 
1
;
Lech Maligranda 
2
;
Konstantin E. Tikhomirov 
3
1
Department of Mathematics and Mechanics Samara State University Acad. Pavlova 1 443011 Samara, Russia
2
Department of Engineering Sciences and Mathematics Luleå University of Technology SE-971 87 Luleå, Sweden
3
Department of Mathematical and Statistical Sciences University of Alberta Edmonton, AB T6G2G1, Canada
@article{10_4064_sm218_1_4,
author = {Sergey V. Astashkin and Lech Maligranda and Konstantin E. Tikhomirov},
title = {New examples of $K$-monotone weighted {Banach} couples},
journal = {Studia Mathematica},
pages = {55--88},
year = {2013},
volume = {218},
number = {1},
doi = {10.4064/sm218-1-4},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm218-1-4/}
}
TY - JOUR
AU - Sergey V. Astashkin
AU - Lech Maligranda
AU - Konstantin E. Tikhomirov
TI - New examples of $K$-monotone weighted Banach couples
JO - Studia Mathematica
PY - 2013
SP - 55
EP - 88
VL - 218
IS - 1
UR - http://geodesic.mathdoc.fr/articles/10.4064/sm218-1-4/
DO - 10.4064/sm218-1-4
LA - en
ID - 10_4064_sm218_1_4
ER -
%0 Journal Article
%A Sergey V. Astashkin
%A Lech Maligranda
%A Konstantin E. Tikhomirov
%T New examples of $K$-monotone weighted Banach couples
%J Studia Mathematica
%D 2013
%P 55-88
%V 218
%N 1
%U http://geodesic.mathdoc.fr/articles/10.4064/sm218-1-4/
%R 10.4064/sm218-1-4
%G en
%F 10_4064_sm218_1_4
Sergey V. Astashkin; Lech Maligranda; Konstantin E. Tikhomirov. New examples of $K$-monotone weighted Banach couples. Studia Mathematica, Tome 218 (2013) no. 1, pp. 55-88. doi: 10.4064/sm218-1-4