The Bishop–Phelps–Bollobás property for
numerical radius in $\ell _{1}(\mathbb {C})$
Studia Mathematica, Tome 218 (2013) no. 1, pp. 41-54
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
We show that the set of bounded linear operators from $X$ to $X$ admits a Bishop–Phelps–Bollobás type theorem for numerical radius whenever $X$ is $\ell _1(\mathbb {C})$ or $c_0(\mathbb {C})$. As an essential tool we provide two constructive versions of the classical Bishop–Phelps–Bollobás theorem for $\ell _1(\mathbb {C})$.
Keywords:
set bounded linear operators admits bishop phelps bollob type theorem numerical radius whenever ell mathbb mathbb essential tool provide constructive versions classical bishop phelps bollob theorem ell mathbb
Affiliations des auteurs :
Antonio J. Guirao 1 ; Olena Kozhushkina 2
@article{10_4064_sm218_1_3,
author = {Antonio J. Guirao and Olena Kozhushkina},
title = {The {Bishop{\textendash}Phelps{\textendash}Bollob\'as} property for
numerical radius in $\ell _{1}(\mathbb {C})$},
journal = {Studia Mathematica},
pages = {41--54},
publisher = {mathdoc},
volume = {218},
number = {1},
year = {2013},
doi = {10.4064/sm218-1-3},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm218-1-3/}
}
TY - JOUR
AU - Antonio J. Guirao
AU - Olena Kozhushkina
TI - The Bishop–Phelps–Bollobás property for
numerical radius in $\ell _{1}(\mathbb {C})$
JO - Studia Mathematica
PY - 2013
SP - 41
EP - 54
VL - 218
IS - 1
PB - mathdoc
UR - http://geodesic.mathdoc.fr/articles/10.4064/sm218-1-3/
DO - 10.4064/sm218-1-3
LA - en
ID - 10_4064_sm218_1_3
ER -
%0 Journal Article
%A Antonio J. Guirao
%A Olena Kozhushkina
%T The Bishop–Phelps–Bollobás property for
numerical radius in $\ell _{1}(\mathbb {C})$
%J Studia Mathematica
%D 2013
%P 41-54
%V 218
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/sm218-1-3/
%R 10.4064/sm218-1-3
%G en
%F 10_4064_sm218_1_3
Antonio J. Guirao; Olena Kozhushkina. The Bishop–Phelps–Bollobás property for
numerical radius in $\ell _{1}(\mathbb {C})$. Studia Mathematica, Tome 218 (2013) no. 1, pp. 41-54. doi: 10.4064/sm218-1-3
Cité par Sources :