An observation on the Turán–Nazarov inequality
Studia Mathematica, Tome 218 (2013) no. 1, pp. 27-39

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

The main observation of this note is that the Lebesgue measure $\mu $ in the Turán–Nazarov inequality for exponential polynomials can be replaced with a certain geometric invariant $\omega \ge \mu $, which can be effectively estimated in terms of the metric entropy of a set, and may be nonzero for discrete and even finite sets. While the frequencies (the imaginary parts of the exponents) do not enter the original Turán–Nazarov inequality, they necessarily enter the definition of $\omega $.
DOI : 10.4064/sm218-1-2
Keywords: main observation note lebesgue measure tur nazarov inequality exponential polynomials replaced certain geometric invariant omega which effectively estimated terms metric entropy set may nonzero discrete even finite sets while frequencies imaginary parts exponents enter original tur nazarov inequality necessarily enter definition nbsp omega

Omer Friedland 1 ; Yosef Yomdin 2

1 Institut de Mathématiques de Jussieu Université Pierre et Marie Curie (Paris 6) 4 Place Jussieu 75005 Paris, France
2 Department of Mathematics The Weizmann Institute of Science Rehovot 76100, Israel
@article{10_4064_sm218_1_2,
     author = {Omer Friedland and Yosef Yomdin},
     title = {An observation on the {Tur\'an{\textendash}Nazarov} inequality},
     journal = {Studia Mathematica},
     pages = {27--39},
     publisher = {mathdoc},
     volume = {218},
     number = {1},
     year = {2013},
     doi = {10.4064/sm218-1-2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm218-1-2/}
}
TY  - JOUR
AU  - Omer Friedland
AU  - Yosef Yomdin
TI  - An observation on the Turán–Nazarov inequality
JO  - Studia Mathematica
PY  - 2013
SP  - 27
EP  - 39
VL  - 218
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm218-1-2/
DO  - 10.4064/sm218-1-2
LA  - en
ID  - 10_4064_sm218_1_2
ER  - 
%0 Journal Article
%A Omer Friedland
%A Yosef Yomdin
%T An observation on the Turán–Nazarov inequality
%J Studia Mathematica
%D 2013
%P 27-39
%V 218
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/sm218-1-2/
%R 10.4064/sm218-1-2
%G en
%F 10_4064_sm218_1_2
Omer Friedland; Yosef Yomdin. An observation on the Turán–Nazarov inequality. Studia Mathematica, Tome 218 (2013) no. 1, pp. 27-39. doi: 10.4064/sm218-1-2

Cité par Sources :