Outers for noncommutative $H^{p}$ revisited
Studia Mathematica, Tome 217 (2013) no. 3, pp. 265-287
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences

Voir la notice de l'article

We continue our study of outer elements of the noncommutative $H^p$ spaces associated with Arveson's subdiagonal algebras. We extend our generalized inner-outer factorization theorem, and our characterization of outer elements, to include the case of elements with zero determinant. In addition, we make several further contributions to the theory of outers. For example, we generalize the classical fact that outers in $H^p$ actually satisfy the stronger condition that there exist $a_n \in A$ with $h a_n \in {\rm Ball}(A)$ and $h a_n \to 1$ in $p$-norm.
DOI : 10.4064/sm217-3-4
Keywords: continue study outer elements noncommutative spaces associated arvesons subdiagonal algebras extend generalized inner outer factorization theorem characterization outer elements include elements zero determinant addition make several further contributions theory outers example generalize classical outers actually satisfy stronger condition there exist ball p norm

David P. Blecher  1   ; Louis E. Labuschagne  2

1 Department of Mathematics University of Houston Houston, TX 77204-3008, U.S.A.
2 Internal Box 209 School of Computer, Statistical and Mathematical Sciences North-West University Pvt. Bag X6001 2520 Potchefstroom, South Africa
@article{10_4064_sm217_3_4,
     author = {David P. Blecher and Louis E. Labuschagne},
     title = {Outers for noncommutative $H^{p}$ revisited},
     journal = {Studia Mathematica},
     pages = {265--287},
     year = {2013},
     volume = {217},
     number = {3},
     doi = {10.4064/sm217-3-4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm217-3-4/}
}
TY  - JOUR
AU  - David P. Blecher
AU  - Louis E. Labuschagne
TI  - Outers for noncommutative $H^{p}$ revisited
JO  - Studia Mathematica
PY  - 2013
SP  - 265
EP  - 287
VL  - 217
IS  - 3
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm217-3-4/
DO  - 10.4064/sm217-3-4
LA  - en
ID  - 10_4064_sm217_3_4
ER  - 
%0 Journal Article
%A David P. Blecher
%A Louis E. Labuschagne
%T Outers for noncommutative $H^{p}$ revisited
%J Studia Mathematica
%D 2013
%P 265-287
%V 217
%N 3
%U http://geodesic.mathdoc.fr/articles/10.4064/sm217-3-4/
%R 10.4064/sm217-3-4
%G en
%F 10_4064_sm217_3_4
David P. Blecher; Louis E. Labuschagne. Outers for noncommutative $H^{p}$ revisited. Studia Mathematica, Tome 217 (2013) no. 3, pp. 265-287. doi: 10.4064/sm217-3-4

Cité par Sources :