The group of $L^{2}$-isometries on $H^{1}_{0}$
Studia Mathematica, Tome 217 (2013) no. 3, pp. 193-217 Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences

Voir la notice de l'article

Let $\varOmega $ be an open subset of $\mathbb R^n$. Let $L^2=L^2(\varOmega ,dx)$ and $H^1_0=H^1_0(\varOmega )$ be the standard Lebesgue and Sobolev spaces of complex-valued functions. The aim of this paper is to study the group $\mathbb {G}$ of invertible operators on $H^1_0$ which preserve the $L^2$-inner product. When $\varOmega $ is bounded and $\partial \varOmega $ is smooth, this group acts as the intertwiner of the $H^1_0$ solutions of the non-homogeneous Helmholtz equation $u-\varDelta u=f$, $u|_{\partial \varOmega }=0$. We show that $\mathbb {G}$ is a real Banach–Lie group, whose Lie algebra is ($i$ times) the space of symmetrizable operators. We discuss the spectrum of operators belonging to $\mathbb {G}$ by means of examples. In particular, we give an example of an operator in $\mathbb {G}$ whose spectrum is not contained in the unit circle. We also study the one-parameter subgroups of $\mathbb {G}$. Curves of minimal length in $\mathbb {G}$ are considered. We introduce the subgroups $\mathbb {G}_p:=\mathbb {G}\cap (I - {\mathcal B}_p(H^1_0))$, where ${\mathcal B}_p(H_0^1)$ is the Schatten ideal of operators on $H_0^1$. An invariant (weak) Finsler metric is defined by the $p$-norm of the Schatten ideal of operators on $L^2$. We prove that any pair of operators $G_1 , G_2 \in \mathbb {G}_p$ can be joined by a minimal curve of the form $\delta (t)=G_1 e^{itX}$, where $X$ is a symmetrizable operator in ${\mathcal B}_p(H^1_0)$.
DOI : 10.4064/sm217-3-1
Keywords: varomega subset mathbb varomega varomega standard lebesgue sobolev spaces complex valued functions paper study group mathbb invertible operators which preserve inner product varomega bounded partial varomega smooth group acts intertwiner solutions non homogeneous helmholtz equation u vardelta partial varomega mathbb real banach lie group whose lie algebra times space symmetrizable operators discuss spectrum operators belonging mathbb means examples particular example operator mathbb whose spectrum contained unit circle study one parameter subgroups mathbb curves minimal length mathbb considered introduce subgroups mathbb mathbb cap mathcal where mathcal schatten ideal operators invariant weak finsler metric defined p norm schatten ideal operators prove pair operators mathbb joined minimal curve form delta itx where symmetrizable operator mathcal

Esteban Andruchow  1   ; Eduardo Chiumiento  2   ; Gabriel Larotonda  1

1 Instituto de Ciencias Universidad Nacional de General Sarmiento and Instituto Argentino de Matemática `Alberto P. Calderón', CONICET J.M. Gutierrez 1150 (B1613GSX) Los Polvorines, Argentina
2 Departamento de Matemática FCE-Universidad Nacional de La Plata and Instituto Argentino de Matemática `Alberto P. Calderón', CONICET Calles 50 y 115 (1900) La Plata, Argentina
@article{10_4064_sm217_3_1,
     author = {Esteban Andruchow and Eduardo Chiumiento and Gabriel Larotonda},
     title = {The group of $L^{2}$-isometries on $H^{1}_{0}$},
     journal = {Studia Mathematica},
     pages = {193--217},
     year = {2013},
     volume = {217},
     number = {3},
     doi = {10.4064/sm217-3-1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm217-3-1/}
}
TY  - JOUR
AU  - Esteban Andruchow
AU  - Eduardo Chiumiento
AU  - Gabriel Larotonda
TI  - The group of $L^{2}$-isometries on $H^{1}_{0}$
JO  - Studia Mathematica
PY  - 2013
SP  - 193
EP  - 217
VL  - 217
IS  - 3
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm217-3-1/
DO  - 10.4064/sm217-3-1
LA  - en
ID  - 10_4064_sm217_3_1
ER  - 
%0 Journal Article
%A Esteban Andruchow
%A Eduardo Chiumiento
%A Gabriel Larotonda
%T The group of $L^{2}$-isometries on $H^{1}_{0}$
%J Studia Mathematica
%D 2013
%P 193-217
%V 217
%N 3
%U http://geodesic.mathdoc.fr/articles/10.4064/sm217-3-1/
%R 10.4064/sm217-3-1
%G en
%F 10_4064_sm217_3_1
Esteban Andruchow; Eduardo Chiumiento; Gabriel Larotonda. The group of $L^{2}$-isometries on $H^{1}_{0}$. Studia Mathematica, Tome 217 (2013) no. 3, pp. 193-217. doi: 10.4064/sm217-3-1

Cité par Sources :