Doubly commuting submodules of the Hardy module over polydiscs
Studia Mathematica, Tome 217 (2013) no. 2, pp. 179-192
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
In this note we establish a vector-valued version of Beurling's theorem (the Lax–Halmos theorem) for the polydisc. As an application of the main result, we provide necessary and sufficient conditions for the “weak” completion problem in $H^\infty (\mathbb {D}^n)$.
Keywords:
note establish vector valued version beurlings theorem lax halmos theorem polydisc application main result provide necessary sufficient conditions weak completion problem infty mathbb
Affiliations des auteurs :
Jaydeb Sarkar 1 ; Amol Sasane 2 ; Brett D. Wick 3
@article{10_4064_sm217_2_5,
author = {Jaydeb Sarkar and Amol Sasane and Brett D. Wick},
title = {Doubly commuting submodules of the {Hardy} module over polydiscs},
journal = {Studia Mathematica},
pages = {179--192},
publisher = {mathdoc},
volume = {217},
number = {2},
year = {2013},
doi = {10.4064/sm217-2-5},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm217-2-5/}
}
TY - JOUR AU - Jaydeb Sarkar AU - Amol Sasane AU - Brett D. Wick TI - Doubly commuting submodules of the Hardy module over polydiscs JO - Studia Mathematica PY - 2013 SP - 179 EP - 192 VL - 217 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/sm217-2-5/ DO - 10.4064/sm217-2-5 LA - en ID - 10_4064_sm217_2_5 ER -
%0 Journal Article %A Jaydeb Sarkar %A Amol Sasane %A Brett D. Wick %T Doubly commuting submodules of the Hardy module over polydiscs %J Studia Mathematica %D 2013 %P 179-192 %V 217 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.4064/sm217-2-5/ %R 10.4064/sm217-2-5 %G en %F 10_4064_sm217_2_5
Jaydeb Sarkar; Amol Sasane; Brett D. Wick. Doubly commuting submodules of the Hardy module over polydiscs. Studia Mathematica, Tome 217 (2013) no. 2, pp. 179-192. doi: 10.4064/sm217-2-5
Cité par Sources :