1Department of Mathematics University of São Paulo São Paulo, Brazil 05508-090 2Department of Mathematics University of Sõ Paulo São Paulo, Brazil 05508-090
Studia Mathematica, Tome 217 (2013) no. 2, pp. 123-138
Let us denote by $C(\alpha )$ the classical Banach space $C(K)$ when $K$ is the interval of ordinals $ [1, \alpha ]$ endowed with the order topology. In the present paper, we give an answer to a 1960 Bessaga and Pełczyński question by providing tight bounds for the Banach–Mazur distance between $C(\omega )$ and any other $C(K)$ space which is isomorphic to it. More precisely, we obtain lower bounds $L(n, k)$ and upper bounds $U(n, k)$ on $d(C(\omega ), C(\omega ^{n} k))$ such that $U(n,k)-L(n, k)2$ for all $1 \leq n, k \omega $.
Keywords:
denote alpha classical banach space interval ordinals alpha endowed order topology present paper answer bessaga czy ski question providing tight bounds banach mazur distance between omega other space which isomorphic precisely obtain lower bounds upper bounds omega omega l leq omega
1
Department of Mathematics University of São Paulo São Paulo, Brazil 05508-090
2
Department of Mathematics University of Sõ Paulo São Paulo, Brazil 05508-090
@article{10_4064_sm217_2_2,
author = {Leandro Candido and El\'oi Medina Galego},
title = {How far is $C(\omega )$ from the other $C(K)$ spaces?},
journal = {Studia Mathematica},
pages = {123--138},
year = {2013},
volume = {217},
number = {2},
doi = {10.4064/sm217-2-2},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm217-2-2/}
}
TY - JOUR
AU - Leandro Candido
AU - Elói Medina Galego
TI - How far is $C(\omega )$ from the other $C(K)$ spaces?
JO - Studia Mathematica
PY - 2013
SP - 123
EP - 138
VL - 217
IS - 2
UR - http://geodesic.mathdoc.fr/articles/10.4064/sm217-2-2/
DO - 10.4064/sm217-2-2
LA - en
ID - 10_4064_sm217_2_2
ER -
%0 Journal Article
%A Leandro Candido
%A Elói Medina Galego
%T How far is $C(\omega )$ from the other $C(K)$ spaces?
%J Studia Mathematica
%D 2013
%P 123-138
%V 217
%N 2
%U http://geodesic.mathdoc.fr/articles/10.4064/sm217-2-2/
%R 10.4064/sm217-2-2
%G en
%F 10_4064_sm217_2_2
Leandro Candido; Elói Medina Galego. How far is $C(\omega )$ from the other $C(K)$ spaces?. Studia Mathematica, Tome 217 (2013) no. 2, pp. 123-138. doi: 10.4064/sm217-2-2