1Faculty of Mathematics and Computer Science Tartu University J. Liivi 2 50409 Tartu, Estonia and Estonian Academy of Sciences Kohtu 6 10130 Tallinn, Estonia 2Faculty of Mathematics and Computer Science Tartu University J. Liivi 2 50409 Tartu, Estonia
Studia Mathematica, Tome 217 (2013) no. 1, pp. 79-94
The main result is as follows. Let $X$ be a Banach space and let $Y$ be a closed subspace of $X$. Assume that the pair $(X^{*}, Y^{\perp })$ has the $\lambda $-bounded approximation property. Then there exists a net $( S_\alpha )$ of finite-rank operators on $X$ such that $S_\alpha (Y) \subset Y$ and $\| S_\alpha \| \leq \lambda $ for all $\alpha $, and $( S_\alpha )$ and $( S^{*}_\alpha )$ converge pointwise to the identity operators on $X$ and $X^{*}$, respectively. This means that the pair $(X,Y)$ has the $\lambda $-bounded duality approximation property.
Keywords:
main result follows banach space closed subspace nbsp assume pair * perp has lambda bounded approximation property there exists net alpha finite rank operators alpha subset alpha leq lambda alpha alpha * alpha converge pointwise identity operators * respectively means pair has lambda bounded duality approximation property
Affiliations des auteurs :
Eve Oja 
1
;
Silja Treialt 
2
1
Faculty of Mathematics and Computer Science Tartu University J. Liivi 2 50409 Tartu, Estonia and Estonian Academy of Sciences Kohtu 6 10130 Tallinn, Estonia
2
Faculty of Mathematics and Computer Science Tartu University J. Liivi 2 50409 Tartu, Estonia
@article{10_4064_sm217_1_5,
author = {Eve Oja and Silja Treialt},
title = {Some duality results on
bounded approximation properties of pairs},
journal = {Studia Mathematica},
pages = {79--94},
year = {2013},
volume = {217},
number = {1},
doi = {10.4064/sm217-1-5},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm217-1-5/}
}
TY - JOUR
AU - Eve Oja
AU - Silja Treialt
TI - Some duality results on
bounded approximation properties of pairs
JO - Studia Mathematica
PY - 2013
SP - 79
EP - 94
VL - 217
IS - 1
UR - http://geodesic.mathdoc.fr/articles/10.4064/sm217-1-5/
DO - 10.4064/sm217-1-5
LA - en
ID - 10_4064_sm217_1_5
ER -
%0 Journal Article
%A Eve Oja
%A Silja Treialt
%T Some duality results on
bounded approximation properties of pairs
%J Studia Mathematica
%D 2013
%P 79-94
%V 217
%N 1
%U http://geodesic.mathdoc.fr/articles/10.4064/sm217-1-5/
%R 10.4064/sm217-1-5
%G en
%F 10_4064_sm217_1_5
Eve Oja; Silja Treialt. Some duality results on
bounded approximation properties of pairs. Studia Mathematica, Tome 217 (2013) no. 1, pp. 79-94. doi: 10.4064/sm217-1-5