It is shown that for every $k\in \mathbb {N}$ and every spreading sequence $\{e_n\}_{n}$ that generates a uniformly convex Banach space $E$, there exists a uniformly convex Banach space $X_{k+1}$ admitting $\{e_n\}_{n}$ as a $k+1$-iterated spreading model, but not as a $k$-iterated one.
Keywords:
shown every mathbb every spreading sequence generates uniformly convex banach space nbsp there exists uniformly convex banach space admitting iterated spreading model k iterated
Affiliations des auteurs :
Spiros A. Argyros 
1
;
Pavlos Motakis 
1
1
Department of Mathematics Faculty of Applied Sciences National Technical University of Athens Zografou Campus 15780, Athens, Greece
@article{10_4064_sm217_1_4,
author = {Spiros A. Argyros and Pavlos Motakis},
title = {Examples of $k$-iterated spreading models},
journal = {Studia Mathematica},
pages = {57--78},
year = {2013},
volume = {217},
number = {1},
doi = {10.4064/sm217-1-4},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm217-1-4/}
}
TY - JOUR
AU - Spiros A. Argyros
AU - Pavlos Motakis
TI - Examples of $k$-iterated spreading models
JO - Studia Mathematica
PY - 2013
SP - 57
EP - 78
VL - 217
IS - 1
UR - http://geodesic.mathdoc.fr/articles/10.4064/sm217-1-4/
DO - 10.4064/sm217-1-4
LA - en
ID - 10_4064_sm217_1_4
ER -
%0 Journal Article
%A Spiros A. Argyros
%A Pavlos Motakis
%T Examples of $k$-iterated spreading models
%J Studia Mathematica
%D 2013
%P 57-78
%V 217
%N 1
%U http://geodesic.mathdoc.fr/articles/10.4064/sm217-1-4/
%R 10.4064/sm217-1-4
%G en
%F 10_4064_sm217_1_4
Spiros A. Argyros; Pavlos Motakis. Examples of $k$-iterated spreading models. Studia Mathematica, Tome 217 (2013) no. 1, pp. 57-78. doi: 10.4064/sm217-1-4