The Lukacs–Olkin–Rubin theorem on symmetric cones
through Gleason's theorem
Studia Mathematica, Tome 217 (2013) no. 1, pp. 1-17
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
We prove the Lukacs characterization of the Wishart distribution on non-octonion symmetric cones of rank greater than $2$. We weaken the smoothness assumptions in the version of the Lukacs theorem of [Bobecka–Wesołowski, Studia Math. 152 (2002), 147–160]. The main tool is a new solution of the Olkin–Baker functional equation on symmetric cones, under the assumption of continuity of respective functions. It was possible thanks to the use of Gleason's theorem.
Keywords:
prove lukacs characterization wishart distribution non octonion symmetric cones rank greater weaken smoothness assumptions version lukacs theorem bobecka weso owski studia math main tool solution olkin baker functional equation symmetric cones under assumption continuity respective functions possible thanks gleasons theorem
Affiliations des auteurs :
Bartosz Kołodziejek 1
@article{10_4064_sm217_1_1,
author = {Bartosz Ko{\l}odziejek},
title = {The {Lukacs{\textendash}Olkin{\textendash}Rubin} theorem on symmetric cones
through {Gleason's} theorem},
journal = {Studia Mathematica},
pages = {1--17},
year = {2013},
volume = {217},
number = {1},
doi = {10.4064/sm217-1-1},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm217-1-1/}
}
Bartosz Kołodziejek. The Lukacs–Olkin–Rubin theorem on symmetric cones through Gleason's theorem. Studia Mathematica, Tome 217 (2013) no. 1, pp. 1-17. doi: 10.4064/sm217-1-1
Cité par Sources :