The Lukacs–Olkin–Rubin theorem on symmetric cones
 through Gleason's theorem
    
    
  
  
  
      
      
      
        
Studia Mathematica, Tome 217 (2013) no. 1, pp. 1-17
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
            
              We prove the Lukacs characterization of the Wishart distribution on non-octonion symmetric cones of rank greater than $2$. We weaken the smoothness assumptions in the version of the Lukacs theorem of [Bobecka–Wesołowski, Studia Math. 152 (2002), 147–160]. The main tool is a new solution of the Olkin–Baker functional equation on symmetric cones, under the assumption of continuity of respective functions. It was possible thanks to the use of Gleason's theorem. 
            
            
            
          
        
      
                  
                    
                    
                    
                        
Keywords: 
prove lukacs characterization wishart distribution non octonion symmetric cones rank greater weaken smoothness assumptions version lukacs theorem bobecka weso owski studia math main tool solution olkin baker functional equation symmetric cones under assumption continuity respective functions possible thanks gleasons theorem
                    
                    
                    
                  
                
                
                
                
                
                Affiliations des auteurs :
                
                
                  
                    
                
                
                
                
                
                
                
                
                
                
              Bartosz Kołodziejek 1
@article{10_4064_sm217_1_1,
     author = {Bartosz Ko{\l}odziejek},
     title = {The {Lukacs{\textendash}Olkin{\textendash}Rubin} theorem on symmetric cones
 through {Gleason's} theorem},
     journal = {Studia Mathematica},
     pages = {1--17},
     publisher = {mathdoc},
     volume = {217},
     number = {1},
     year = {2013},
     doi = {10.4064/sm217-1-1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm217-1-1/}
}
                      
                      
                    TY - JOUR AU - Bartosz Kołodziejek TI - The Lukacs–Olkin–Rubin theorem on symmetric cones through Gleason's theorem JO - Studia Mathematica PY - 2013 SP - 1 EP - 17 VL - 217 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/sm217-1-1/ DO - 10.4064/sm217-1-1 LA - en ID - 10_4064_sm217_1_1 ER -
Bartosz Kołodziejek. The Lukacs–Olkin–Rubin theorem on symmetric cones through Gleason's theorem. Studia Mathematica, Tome 217 (2013) no. 1, pp. 1-17. doi: 10.4064/sm217-1-1
Cité par Sources :
