Analytic semigroups on vector valued
noncommutative $L^p$-spaces
Studia Mathematica, Tome 216 (2013) no. 3, pp. 271-290
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
We give sufficient conditions on an operator space $E$ and on a semigroup of operators on a von Neumann algebra $M$ to obtain a bounded analytic or $R$-analytic semigroup $(T_t \otimes \mathrm {Id}_E)_{t \geq 0}$ on the vector valued noncommutative $L^p$-space $L^p(M,E)$. Moreover, we give applications to the $H^\infty (\varSigma _\theta )$ functional calculus of the generators of these semigroups, generalizing some earlier work of M. Junge, C. Le Merdy and Q. Xu.
Keywords:
sufficient conditions operator space semigroup operators von neumann algebra obtain bounded analytic r analytic semigroup otimes mathrm geq vector valued noncommutative p space e moreover applications infty varsigma theta functional calculus generators these semigroups generalizing earlier work nbsp junge nbsp nbsp merdy nbsp
Affiliations des auteurs :
Cédric Arhancet 1
@article{10_4064_sm216_3_5,
author = {C\'edric Arhancet},
title = {Analytic semigroups on vector valued
noncommutative $L^p$-spaces},
journal = {Studia Mathematica},
pages = {271--290},
publisher = {mathdoc},
volume = {216},
number = {3},
year = {2013},
doi = {10.4064/sm216-3-5},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm216-3-5/}
}
TY - JOUR AU - Cédric Arhancet TI - Analytic semigroups on vector valued noncommutative $L^p$-spaces JO - Studia Mathematica PY - 2013 SP - 271 EP - 290 VL - 216 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/sm216-3-5/ DO - 10.4064/sm216-3-5 LA - en ID - 10_4064_sm216_3_5 ER -
Cédric Arhancet. Analytic semigroups on vector valued noncommutative $L^p$-spaces. Studia Mathematica, Tome 216 (2013) no. 3, pp. 271-290. doi: 10.4064/sm216-3-5
Cité par Sources :