Pisier's inequality revisited
Studia Mathematica, Tome 215 (2013) no. 3, pp. 221-235
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
Given a Banach space $X$, for $n\in \mathbb{N}$ and $p\in (1,\infty)$ we
investigate the smallest constant $\mathfrak P\!\in \!(0,\infty)$ for
which every $n$-tuple of functions $f_1,\ldots,f_n\!:\!\{-1,1\}^n\!\to\! X$
satisfies
\[\def\e{\varepsilon}\def\d{\delta}\int_{\{-1,1\}^n}\Big\|\sum_{j=1}^n
\partial_jf_j(\e)\Big\|^p\,d\mu(\varepsilon)\le
\mathfrak{P}^p\int_{\{-1,1\}^n}\int_{\{-1,1\}^n}\Big\|\sum_{j=1}^n
\d_j\varDelta f_j(\varepsilon)\Big\|^p\,d\mu(\varepsilon) \,d\mu(\delta),
\]
where $\mu$ is the uniform probability measure on the discrete
hypercube $\{-1,1\}^n$, and $\{\partial_j\}_{j=1}^n$ and
$\varDelta=\sum_{j=1}^n\partial_j$ are the hypercube partial
derivatives and the hypercube Laplacian, respectively. Denoting this
constant by $\mathfrak{P}_p^n(X)$, we show that
$$\mathfrak{P}_p^n(X)\le \sum_{k=1}^{n}\frac{1}{k}$$ for every Banach
space $(X,\|\cdot\|)$. This extends the classical Pisier inequality,
which corresponds to the special case $f_j=\varDelta^{-1}\partial_j f$
for some $f:\{-1,1\}^n\to X$. We show that $\sup_{n\in
\mathbb{N}}\mathfrak{P}_p^n(X)\infty$ if either the dual $X^*$ is a
$\mathrm{UMD}^+$ Banach space, or for some $\theta\in (0,1)$ we have
$X=[H,Y]_\theta$, where $H$ is a Hilbert space and $Y$ is an
arbitrary Banach space. It follows that $\sup_{n\in
\mathbb N}\mathfrak{P}_p^n(X)\infty$ if $X$ is a Banach lattice of
nontrivial type.
Keywords:
given banach space mathbb infty investigate smallest constant mathfrak infty which every n tuple functions ldots satisfies def varepsilon def delta int sum partial varepsilon mathfrak int int sum vardelta varepsilon varepsilon delta where uniform probability measure discrete hypercube partial vardelta sum partial hypercube partial derivatives hypercube laplacian respectively denoting constant mathfrak mathfrak sum frac every banach space cdot extends classical pisier inequality which corresponds special vardelta partial sup mathbb mathfrak infty either dual * mathrm umd banach space theta have theta where hilbert space arbitrary banach space follows sup mathbb mathfrak infty banach lattice nontrivial type
Affiliations des auteurs :
Tuomas Hytönen 1 ; Assaf Naor 2
@article{10_4064_sm215_3_2,
author = {Tuomas Hyt\"onen and Assaf Naor},
title = {Pisier's inequality revisited},
journal = {Studia Mathematica},
pages = {221--235},
year = {2013},
volume = {215},
number = {3},
doi = {10.4064/sm215-3-2},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm215-3-2/}
}
Tuomas Hytönen; Assaf Naor. Pisier's inequality revisited. Studia Mathematica, Tome 215 (2013) no. 3, pp. 221-235. doi: 10.4064/sm215-3-2
Cité par Sources :