Pisier's inequality revisited
Studia Mathematica, Tome 215 (2013) no. 3, pp. 221-235 Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences

Voir la notice de l'article

Given a Banach space $X$, for $n\in \mathbb{N}$ and $p\in (1,\infty)$ we investigate the smallest constant $\mathfrak P\!\in \!(0,\infty)$ for which every $n$-tuple of functions $f_1,\ldots,f_n\!:\!\{-1,1\}^n\!\to\! X$ satisfies \[\def\e{\varepsilon}\def\d{\delta}\int_{\{-1,1\}^n}\Big\|\sum_{j=1}^n \partial_jf_j(\e)\Big\|^p\,d\mu(\varepsilon)\le \mathfrak{P}^p\int_{\{-1,1\}^n}\int_{\{-1,1\}^n}\Big\|\sum_{j=1}^n \d_j\varDelta f_j(\varepsilon)\Big\|^p\,d\mu(\varepsilon) \,d\mu(\delta), \] where $\mu$ is the uniform probability measure on the discrete hypercube $\{-1,1\}^n$, and $\{\partial_j\}_{j=1}^n$ and $\varDelta=\sum_{j=1}^n\partial_j$ are the hypercube partial derivatives and the hypercube Laplacian, respectively. Denoting this constant by $\mathfrak{P}_p^n(X)$, we show that $$\mathfrak{P}_p^n(X)\le \sum_{k=1}^{n}\frac{1}{k}$$ for every Banach space $(X,\|\cdot\|)$. This extends the classical Pisier inequality, which corresponds to the special case $f_j=\varDelta^{-1}\partial_j f$ for some $f:\{-1,1\}^n\to X$. We show that $\sup_{n\in \mathbb{N}}\mathfrak{P}_p^n(X)\infty$ if either the dual $X^*$ is a $\mathrm{UMD}^+$ Banach space, or for some $\theta\in (0,1)$ we have $X=[H,Y]_\theta$, where $H$ is a Hilbert space and $Y$ is an arbitrary Banach space. It follows that $\sup_{n\in \mathbb N}\mathfrak{P}_p^n(X)\infty$ if $X$ is a Banach lattice of nontrivial type.
DOI : 10.4064/sm215-3-2
Keywords: given banach space mathbb infty investigate smallest constant mathfrak infty which every n tuple functions ldots satisfies def varepsilon def delta int sum partial varepsilon mathfrak int int sum vardelta varepsilon varepsilon delta where uniform probability measure discrete hypercube partial vardelta sum partial hypercube partial derivatives hypercube laplacian respectively denoting constant mathfrak mathfrak sum frac every banach space cdot extends classical pisier inequality which corresponds special vardelta partial sup mathbb mathfrak infty either dual * mathrm umd banach space theta have theta where hilbert space arbitrary banach space follows sup mathbb mathfrak infty banach lattice nontrivial type

Tuomas Hytönen 1 ; Assaf Naor 2

1 Department of Mathematics and Statistics University of Helsinki P.O. Box 68 FI-00014 Helsinki, Finland
2 Courant Institute of Mathematical Sciences New York University 251 Mercer Street New York, NY 10012, U.S.A.
@article{10_4064_sm215_3_2,
     author = {Tuomas Hyt\"onen and Assaf Naor},
     title = {Pisier's inequality revisited},
     journal = {Studia Mathematica},
     pages = {221--235},
     year = {2013},
     volume = {215},
     number = {3},
     doi = {10.4064/sm215-3-2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm215-3-2/}
}
TY  - JOUR
AU  - Tuomas Hytönen
AU  - Assaf Naor
TI  - Pisier's inequality revisited
JO  - Studia Mathematica
PY  - 2013
SP  - 221
EP  - 235
VL  - 215
IS  - 3
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm215-3-2/
DO  - 10.4064/sm215-3-2
LA  - en
ID  - 10_4064_sm215_3_2
ER  - 
%0 Journal Article
%A Tuomas Hytönen
%A Assaf Naor
%T Pisier's inequality revisited
%J Studia Mathematica
%D 2013
%P 221-235
%V 215
%N 3
%U http://geodesic.mathdoc.fr/articles/10.4064/sm215-3-2/
%R 10.4064/sm215-3-2
%G en
%F 10_4064_sm215_3_2
Tuomas Hytönen; Assaf Naor. Pisier's inequality revisited. Studia Mathematica, Tome 215 (2013) no. 3, pp. 221-235. doi: 10.4064/sm215-3-2

Cité par Sources :