Periodic solutions of an abstract
third-order differential equation
Studia Mathematica, Tome 215 (2013) no. 3, pp. 195-219
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
Using operator valued Fourier multipliers, we characterize maximal regularity for the abstract third-order differential equation $\alpha u'''(t) + u''(t) = \beta Au(t) +\gamma Bu'(t) +f(t)$ with boundary conditions $u(0)=u(2\pi )$, $u'(0)=u'(2\pi )$ and $u''(0)=u''(2\pi )$, where $A$ and $B$ are closed linear operators defined on a Banach space $X$, $\alpha ,\beta ,\gamma \in \mathbb {R}_+$, and $f$ belongs to either periodic Lebesgue spaces, or periodic Besov spaces, or periodic Triebel–Lizorkin spaces.
Keywords:
using operator valued fourier multipliers characterize maximal regularity abstract third order differential equation alpha beta gamma boundary conditions where closed linear operators defined banach space alpha beta gamma mathbb belongs either periodic lebesgue spaces periodic besov spaces periodic triebel lizorkin spaces
Affiliations des auteurs :
Verónica Poblete 1 ; Juan C. Pozo 2
@article{10_4064_sm215_3_1,
author = {Ver\'onica Poblete and Juan C. Pozo},
title = {Periodic solutions of an abstract
third-order differential equation},
journal = {Studia Mathematica},
pages = {195--219},
year = {2013},
volume = {215},
number = {3},
doi = {10.4064/sm215-3-1},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm215-3-1/}
}
TY - JOUR AU - Verónica Poblete AU - Juan C. Pozo TI - Periodic solutions of an abstract third-order differential equation JO - Studia Mathematica PY - 2013 SP - 195 EP - 219 VL - 215 IS - 3 UR - http://geodesic.mathdoc.fr/articles/10.4064/sm215-3-1/ DO - 10.4064/sm215-3-1 LA - en ID - 10_4064_sm215_3_1 ER -
Verónica Poblete; Juan C. Pozo. Periodic solutions of an abstract third-order differential equation. Studia Mathematica, Tome 215 (2013) no. 3, pp. 195-219. doi: 10.4064/sm215-3-1
Cité par Sources :