Squaring a reverse AM-GM inequality
Studia Mathematica, Tome 215 (2013) no. 2, pp. 187-194
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
Let $A , B$ be positive operators on a Hilbert space with $0 m \le A, B \le M$. Then for every unital positive linear map $\varPhi $,
$$ \varPhi ^2((A+B)/2)\le K^2(h)\varPhi ^{2}(A\mathbin {\sharp } B), $$
and
$$ \varPhi ^2((A+B)/2)\le K^2(h)(\varPhi (A)\mathbin {\sharp } \varPhi (B))^{2}, $$
where $A\mathbin {\sharp } B$ is the geometric mean and $K(h)={(h+1)^2/(4h)}$ with $h=M/m$.
Keywords:
positive operators hilbert space every unital positive linear map varphi varphi varphi mathbin sharp varphi varphi mathbin sharp varphi where mathbin sharp geometric mean
Affiliations des auteurs :
Minghua Lin 1
@article{10_4064_sm215_2_6,
author = {Minghua Lin},
title = {Squaring a reverse {AM-GM} inequality},
journal = {Studia Mathematica},
pages = {187--194},
publisher = {mathdoc},
volume = {215},
number = {2},
year = {2013},
doi = {10.4064/sm215-2-6},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm215-2-6/}
}
Minghua Lin. Squaring a reverse AM-GM inequality. Studia Mathematica, Tome 215 (2013) no. 2, pp. 187-194. doi: 10.4064/sm215-2-6
Cité par Sources :