Squaring a reverse AM-GM inequality
Studia Mathematica, Tome 215 (2013) no. 2, pp. 187-194

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Let $A , B$ be positive operators on a Hilbert space with $0 m \le A, B \le M$. Then for every unital positive linear map $\varPhi $, $$ \varPhi ^2((A+B)/2)\le K^2(h)\varPhi ^{2}(A\mathbin {\sharp } B), $$ and $$ \varPhi ^2((A+B)/2)\le K^2(h)(\varPhi (A)\mathbin {\sharp } \varPhi (B))^{2}, $$ where $A\mathbin {\sharp } B$ is the geometric mean and $K(h)={(h+1)^2/(4h)}$ with $h=M/m$.
DOI : 10.4064/sm215-2-6
Keywords: positive operators hilbert space every unital positive linear map varphi varphi varphi mathbin sharp varphi varphi mathbin sharp varphi where mathbin sharp geometric mean

Minghua Lin 1

1 Department of Applied Mathematics University of Waterloo Waterloo, ON, N2L 3G1, Canada
@article{10_4064_sm215_2_6,
     author = {Minghua Lin},
     title = {Squaring a reverse {AM-GM} inequality},
     journal = {Studia Mathematica},
     pages = {187--194},
     publisher = {mathdoc},
     volume = {215},
     number = {2},
     year = {2013},
     doi = {10.4064/sm215-2-6},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm215-2-6/}
}
TY  - JOUR
AU  - Minghua Lin
TI  - Squaring a reverse AM-GM inequality
JO  - Studia Mathematica
PY  - 2013
SP  - 187
EP  - 194
VL  - 215
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm215-2-6/
DO  - 10.4064/sm215-2-6
LA  - en
ID  - 10_4064_sm215_2_6
ER  - 
%0 Journal Article
%A Minghua Lin
%T Squaring a reverse AM-GM inequality
%J Studia Mathematica
%D 2013
%P 187-194
%V 215
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/sm215-2-6/
%R 10.4064/sm215-2-6
%G en
%F 10_4064_sm215_2_6
Minghua Lin. Squaring a reverse AM-GM inequality. Studia Mathematica, Tome 215 (2013) no. 2, pp. 187-194. doi: 10.4064/sm215-2-6

Cité par Sources :