1Department of Mathematics Faculty of Mathematics and Computer Science University of Bucharest Str. Academiei nr. 14 Bucureşti, Romania 2Department of Mathematics University of Athens Panepistimiopolis Athens 15784, Greece
Studia Mathematica, Tome 215 (2013) no. 2, pp. 139-156
We define the crossed product of a pro-$C^{*}$-algebra $A$ by a Hilbert $A\text {-}\hskip -1pt A$ pro-$C^{*}$-bimodule and we show that it can be realized as an inverse limit of crossed products of $C^{*}$-algebras by Hilbert $C^{*}$-bimodules. We also prove that under some conditions the crossed products of two Hilbert pro-$C^{\ast }$-bimodules over strongly Morita equivalent pro-$C^{\ast }$-algebras are strongly Morita equivalent.
Keywords:
define crossed product pro c * algebra hilbert text hskip pro c * bimodule realized inverse limit crossed products * algebras hilbert * bimodules prove under conditions crossed products hilbert pro c ast bimodules strongly morita equivalent pro c ast algebras strongly morita equivalent
Affiliations des auteurs :
Maria Joiţa 
1
;
Ioannis Zarakas 
2
1
Department of Mathematics Faculty of Mathematics and Computer Science University of Bucharest Str. Academiei nr. 14 Bucureşti, Romania
2
Department of Mathematics University of Athens Panepistimiopolis Athens 15784, Greece
@article{10_4064_sm215_2_4,
author = {Maria Joi\c{t}a and Ioannis Zarakas},
title = {Crossed products by {Hilbert} pro-$C^{\ast }$-bimodules},
journal = {Studia Mathematica},
pages = {139--156},
year = {2013},
volume = {215},
number = {2},
doi = {10.4064/sm215-2-4},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm215-2-4/}
}
TY - JOUR
AU - Maria Joiţa
AU - Ioannis Zarakas
TI - Crossed products by Hilbert pro-$C^{\ast }$-bimodules
JO - Studia Mathematica
PY - 2013
SP - 139
EP - 156
VL - 215
IS - 2
UR - http://geodesic.mathdoc.fr/articles/10.4064/sm215-2-4/
DO - 10.4064/sm215-2-4
LA - en
ID - 10_4064_sm215_2_4
ER -
%0 Journal Article
%A Maria Joiţa
%A Ioannis Zarakas
%T Crossed products by Hilbert pro-$C^{\ast }$-bimodules
%J Studia Mathematica
%D 2013
%P 139-156
%V 215
%N 2
%U http://geodesic.mathdoc.fr/articles/10.4064/sm215-2-4/
%R 10.4064/sm215-2-4
%G en
%F 10_4064_sm215_2_4
Maria Joiţa; Ioannis Zarakas. Crossed products by Hilbert pro-$C^{\ast }$-bimodules. Studia Mathematica, Tome 215 (2013) no. 2, pp. 139-156. doi: 10.4064/sm215-2-4