Crossed products by Hilbert pro-$C^{\ast }$-bimodules
Studia Mathematica, Tome 215 (2013) no. 2, pp. 139-156

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We define the crossed product of a pro-$C^{*}$-algebra $A$ by a Hilbert $A\text {-}\hskip -1pt A$ pro-$C^{*}$-bimodule and we show that it can be realized as an inverse limit of crossed products of $C^{*}$-algebras by Hilbert $C^{*}$-bimodules. We also prove that under some conditions the crossed products of two Hilbert pro-$C^{\ast }$-bimodules over strongly Morita equivalent pro-$C^{\ast }$-algebras are strongly Morita equivalent.
DOI : 10.4064/sm215-2-4
Keywords: define crossed product pro c * algebra hilbert text hskip pro c * bimodule realized inverse limit crossed products * algebras hilbert * bimodules prove under conditions crossed products hilbert pro c ast bimodules strongly morita equivalent pro c ast algebras strongly morita equivalent

Maria Joiţa 1 ; Ioannis Zarakas 2

1 Department of Mathematics Faculty of Mathematics and Computer Science University of Bucharest Str. Academiei nr. 14 Bucureşti, Romania
2 Department of Mathematics University of Athens Panepistimiopolis Athens 15784, Greece
@article{10_4064_sm215_2_4,
     author = {Maria Joi\c{t}a and Ioannis Zarakas},
     title = {Crossed products by {Hilbert} pro-$C^{\ast }$-bimodules},
     journal = {Studia Mathematica},
     pages = {139--156},
     publisher = {mathdoc},
     volume = {215},
     number = {2},
     year = {2013},
     doi = {10.4064/sm215-2-4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm215-2-4/}
}
TY  - JOUR
AU  - Maria Joiţa
AU  - Ioannis Zarakas
TI  - Crossed products by Hilbert pro-$C^{\ast }$-bimodules
JO  - Studia Mathematica
PY  - 2013
SP  - 139
EP  - 156
VL  - 215
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm215-2-4/
DO  - 10.4064/sm215-2-4
LA  - en
ID  - 10_4064_sm215_2_4
ER  - 
%0 Journal Article
%A Maria Joiţa
%A Ioannis Zarakas
%T Crossed products by Hilbert pro-$C^{\ast }$-bimodules
%J Studia Mathematica
%D 2013
%P 139-156
%V 215
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/sm215-2-4/
%R 10.4064/sm215-2-4
%G en
%F 10_4064_sm215_2_4
Maria Joiţa; Ioannis Zarakas. Crossed products by Hilbert pro-$C^{\ast }$-bimodules. Studia Mathematica, Tome 215 (2013) no. 2, pp. 139-156. doi: 10.4064/sm215-2-4

Cité par Sources :