Crossed products by Hilbert pro-$C^{\ast }$-bimodules
Studia Mathematica, Tome 215 (2013) no. 2, pp. 139-156
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
We define the crossed product of a pro-$C^{*}$-algebra $A$ by a Hilbert $A\text {-}\hskip -1pt A$ pro-$C^{*}$-bimodule and we show that it can be realized as an inverse limit of crossed products of $C^{*}$-algebras by Hilbert $C^{*}$-bimodules. We also prove that under some conditions the crossed products of two Hilbert pro-$C^{\ast }$-bimodules over strongly Morita equivalent pro-$C^{\ast }$-algebras are strongly Morita equivalent.
Keywords:
define crossed product pro c * algebra hilbert text hskip pro c * bimodule realized inverse limit crossed products * algebras hilbert * bimodules prove under conditions crossed products hilbert pro c ast bimodules strongly morita equivalent pro c ast algebras strongly morita equivalent
Affiliations des auteurs :
Maria Joiţa 1 ; Ioannis Zarakas 2
@article{10_4064_sm215_2_4,
author = {Maria Joi\c{t}a and Ioannis Zarakas},
title = {Crossed products by {Hilbert} pro-$C^{\ast }$-bimodules},
journal = {Studia Mathematica},
pages = {139--156},
publisher = {mathdoc},
volume = {215},
number = {2},
year = {2013},
doi = {10.4064/sm215-2-4},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm215-2-4/}
}
TY - JOUR
AU - Maria Joiţa
AU - Ioannis Zarakas
TI - Crossed products by Hilbert pro-$C^{\ast }$-bimodules
JO - Studia Mathematica
PY - 2013
SP - 139
EP - 156
VL - 215
IS - 2
PB - mathdoc
UR - http://geodesic.mathdoc.fr/articles/10.4064/sm215-2-4/
DO - 10.4064/sm215-2-4
LA - en
ID - 10_4064_sm215_2_4
ER -
Maria Joiţa; Ioannis Zarakas. Crossed products by Hilbert pro-$C^{\ast }$-bimodules. Studia Mathematica, Tome 215 (2013) no. 2, pp. 139-156. doi: 10.4064/sm215-2-4
Cité par Sources :