Segal algebras, approximate identities
and norm irregularity in $C_0(X,A)$
Studia Mathematica, Tome 215 (2013) no. 2, pp. 99-112
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
We study three closely related concepts in the context of the Banach algebra $C_0(X,A)$. We show that, to a certain extent, Segal extensions, norm irregularity and the existence of approximate identities in $C_0(X,A)$ can be deduced from the corresponding features of $A$ and vice versa. Extensive use is made of the multiplier norm and the tensor product representation of $C_0(X,A)$.
Keywords:
study three closely related concepts context banach algebra certain extent segal extensions norm irregularity existence approximate identities deduced corresponding features vice versa extensive made multiplier norm tensor product representation
Affiliations des auteurs :
Jussi Mattas 1
@article{10_4064_sm215_2_1,
author = {Jussi Mattas},
title = {Segal algebras, approximate identities
and norm irregularity in $C_0(X,A)$},
journal = {Studia Mathematica},
pages = {99--112},
publisher = {mathdoc},
volume = {215},
number = {2},
year = {2013},
doi = {10.4064/sm215-2-1},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm215-2-1/}
}
TY - JOUR AU - Jussi Mattas TI - Segal algebras, approximate identities and norm irregularity in $C_0(X,A)$ JO - Studia Mathematica PY - 2013 SP - 99 EP - 112 VL - 215 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/sm215-2-1/ DO - 10.4064/sm215-2-1 LA - en ID - 10_4064_sm215_2_1 ER -
Jussi Mattas. Segal algebras, approximate identities and norm irregularity in $C_0(X,A)$. Studia Mathematica, Tome 215 (2013) no. 2, pp. 99-112. doi: 10.4064/sm215-2-1
Cité par Sources :