1Department of Pure Mathematics University of Waterloo Waterloo, Ontario, Canada N2L 3G1 2Department of Mathematics and Statistics University of Victoria Victoria, BC, Canada V8W 3P4
Studia Mathematica, Tome 214 (2013) no. 3, pp. 279-296
Let ${\mathcal H}$ be a complex, separable Hilbert space of finite or
infinite dimension, and let $\mathcal B(\mathcal H)$ be the algebra of all bounded
operators on ${\mathcal H}$. It is shown that if $\varphi:\mathcal B(\mathcal H) \to \mathcal B(\mathcal H)$
is a multiplicative map (not assumed linear) and if $\varphi$ is
sufficiently close to a linear automorphism of $\mathcal B(\mathcal H)$ in some
uniform sense, then it is actually an automorphism; as such, there
is an invertible operator $S$ in $\mathcal B(\mathcal H)$ such that $\varphi(A) =
S^{-1} AS$ for all $A$ in $\mathcal B(\mathcal H)$. When ${\mathcal H}$ is
finite-dimensional, similar results are obtained with the mere
assumption that there exists a linear functional $f$ on $\mathcal B(\mathcal H)$ so
that $f\circ \varphi$ is close to $f \circ \mu$ for some
automorphism $\mu$ of $\mathcal B(\mathcal H)$.
Keywords:
mathcal complex separable hilbert space finite infinite dimension mathcal mathcal algebra bounded operators mathcal shown varphi mathcal mathcal mathcal mathcal multiplicative map assumed linear varphi sufficiently close linear automorphism mathcal mathcal uniform sense actually automorphism there invertible operator mathcal mathcal varphi mathcal mathcal mathcal finite dimensional similar results obtained mere assumption there exists linear functional mathcal mathcal circ varphi close circ automorphism nbsp mathcal mathcal
Affiliations des auteurs :
L. W. Marcoux 
1
;
H. Radjavi 
1
;
A. R. Sourour 
2
1
Department of Pure Mathematics University of Waterloo Waterloo, Ontario, Canada N2L 3G1
2
Department of Mathematics and Statistics University of Victoria Victoria, BC, Canada V8W 3P4
@article{10_4064_sm214_3_6,
author = {L. W. Marcoux and H. Radjavi and A. R. Sourour},
title = {Multiplicative maps that are close to an
automorphism on algebras of linear transformations},
journal = {Studia Mathematica},
pages = {279--296},
year = {2013},
volume = {214},
number = {3},
doi = {10.4064/sm214-3-6},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm214-3-6/}
}
TY - JOUR
AU - L. W. Marcoux
AU - H. Radjavi
AU - A. R. Sourour
TI - Multiplicative maps that are close to an
automorphism on algebras of linear transformations
JO - Studia Mathematica
PY - 2013
SP - 279
EP - 296
VL - 214
IS - 3
UR - http://geodesic.mathdoc.fr/articles/10.4064/sm214-3-6/
DO - 10.4064/sm214-3-6
LA - en
ID - 10_4064_sm214_3_6
ER -
%0 Journal Article
%A L. W. Marcoux
%A H. Radjavi
%A A. R. Sourour
%T Multiplicative maps that are close to an
automorphism on algebras of linear transformations
%J Studia Mathematica
%D 2013
%P 279-296
%V 214
%N 3
%U http://geodesic.mathdoc.fr/articles/10.4064/sm214-3-6/
%R 10.4064/sm214-3-6
%G en
%F 10_4064_sm214_3_6
L. W. Marcoux; H. Radjavi; A. R. Sourour. Multiplicative maps that are close to an
automorphism on algebras of linear transformations. Studia Mathematica, Tome 214 (2013) no. 3, pp. 279-296. doi: 10.4064/sm214-3-6