Limiting behaviour of intrinsic seminorms in fractional order Sobolev spaces
Studia Mathematica, Tome 214 (2013) no. 2, pp. 101-120

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We collect and extend results on the limit of $\sigma^{1-k}(1-\sigma)^{k}|v|_{l+\sigma,p,\varOmega}^p$ as $\sigma\to0^{+}$ or $\sigma\to1^{-}$, where $\varOmega$ is $\mathbb{R}^n$ or a smooth bounded domain, $k\in\{0,1\}$, $l\in\mathbb{N}$, $p\in[1,\infty)$, and $|\,\cdot\,|_{l+\sigma,p,\varOmega}$ is the intrinsic seminorm of order $l+\sigma$ in the Sobolev space $W^{l+\sigma,p}(\varOmega)$. In general, the above limit is equal to $c[v]^p$, where $c$ and $[\,\cdot\,]$ are, respectively, a~constant and a seminorm that we explicitly provide. The particular case $p=2$ for $\varOmega=\mathbb{R}^n$ is also examined and the results are then proved by using the Fourier transform.
DOI : 10.4064/sm214-2-1
Keywords: collect extend results limit sigma k sigma sigma varomega sigma sigma where varomega mathbb smooth bounded domain mathbb infty cdot sigma varomega intrinsic seminorm order sigma sobolev space sigma varomega general above limit equal where cdot respectively constant seminorm explicitly provide particular varomega mathbb examined results proved using fourier transform

Rémi Arcangéli 1 ; Juan José Torrens 2

1 Retired Professor Route de Barat 31160 Arbas, France
2 Departamento de Ingeniería Matemática e Informática Universidad Pública de Navarra Campus de Arrosadía 31006 Pamplona, Spain
@article{10_4064_sm214_2_1,
     author = {R\'emi Arcang\'eli and Juan Jos\'e Torrens},
     title = {Limiting behaviour of intrinsic seminorms 
 in fractional order {Sobolev} spaces},
     journal = {Studia Mathematica},
     pages = {101--120},
     publisher = {mathdoc},
     volume = {214},
     number = {2},
     year = {2013},
     doi = {10.4064/sm214-2-1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm214-2-1/}
}
TY  - JOUR
AU  - Rémi Arcangéli
AU  - Juan José Torrens
TI  - Limiting behaviour of intrinsic seminorms 
 in fractional order Sobolev spaces
JO  - Studia Mathematica
PY  - 2013
SP  - 101
EP  - 120
VL  - 214
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm214-2-1/
DO  - 10.4064/sm214-2-1
LA  - en
ID  - 10_4064_sm214_2_1
ER  - 
%0 Journal Article
%A Rémi Arcangéli
%A Juan José Torrens
%T Limiting behaviour of intrinsic seminorms 
 in fractional order Sobolev spaces
%J Studia Mathematica
%D 2013
%P 101-120
%V 214
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/sm214-2-1/
%R 10.4064/sm214-2-1
%G en
%F 10_4064_sm214_2_1
Rémi Arcangéli; Juan José Torrens. Limiting behaviour of intrinsic seminorms 
 in fractional order Sobolev spaces. Studia Mathematica, Tome 214 (2013) no. 2, pp. 101-120. doi: 10.4064/sm214-2-1

Cité par Sources :