Limiting behaviour of intrinsic seminorms
in fractional order Sobolev spaces
Studia Mathematica, Tome 214 (2013) no. 2, pp. 101-120
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
We collect and extend results on the limit of
$\sigma^{1-k}(1-\sigma)^{k}|v|_{l+\sigma,p,\varOmega}^p$ as
$\sigma\to0^{+}$ or $\sigma\to1^{-}$, where $\varOmega$ is $\mathbb{R}^n$ or a
smooth bounded domain, $k\in\{0,1\}$, $l\in\mathbb{N}$,
$p\in[1,\infty)$, and $|\,\cdot\,|_{l+\sigma,p,\varOmega}$ is the
intrinsic seminorm of order $l+\sigma$ in the Sobolev space
$W^{l+\sigma,p}(\varOmega)$. In general, the above limit is equal to
$c[v]^p$, where $c$ and $[\,\cdot\,]$ are, respectively, a~constant
and a seminorm that we explicitly provide. The particular case
$p=2$ for $\varOmega=\mathbb{R}^n$ is also examined and the results are then
proved by using the Fourier transform.
Keywords:
collect extend results limit sigma k sigma sigma varomega sigma sigma where varomega mathbb smooth bounded domain mathbb infty cdot sigma varomega intrinsic seminorm order sigma sobolev space sigma varomega general above limit equal where cdot respectively constant seminorm explicitly provide particular varomega mathbb examined results proved using fourier transform
Affiliations des auteurs :
Rémi Arcangéli 1 ; Juan José Torrens 2
@article{10_4064_sm214_2_1,
author = {R\'emi Arcang\'eli and Juan Jos\'e Torrens},
title = {Limiting behaviour of intrinsic seminorms
in fractional order {Sobolev} spaces},
journal = {Studia Mathematica},
pages = {101--120},
publisher = {mathdoc},
volume = {214},
number = {2},
year = {2013},
doi = {10.4064/sm214-2-1},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm214-2-1/}
}
TY - JOUR AU - Rémi Arcangéli AU - Juan José Torrens TI - Limiting behaviour of intrinsic seminorms in fractional order Sobolev spaces JO - Studia Mathematica PY - 2013 SP - 101 EP - 120 VL - 214 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/sm214-2-1/ DO - 10.4064/sm214-2-1 LA - en ID - 10_4064_sm214_2_1 ER -
%0 Journal Article %A Rémi Arcangéli %A Juan José Torrens %T Limiting behaviour of intrinsic seminorms in fractional order Sobolev spaces %J Studia Mathematica %D 2013 %P 101-120 %V 214 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.4064/sm214-2-1/ %R 10.4064/sm214-2-1 %G en %F 10_4064_sm214_2_1
Rémi Arcangéli; Juan José Torrens. Limiting behaviour of intrinsic seminorms in fractional order Sobolev spaces. Studia Mathematica, Tome 214 (2013) no. 2, pp. 101-120. doi: 10.4064/sm214-2-1
Cité par Sources :