Well-posedness of second order degenerate differential equations in vector-valued function spaces
Studia Mathematica, Tome 214 (2013) no. 1, pp. 1-16
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
Using known results on operator-valued Fourier multipliers on vector-valued function spaces, we give necessary or sufficient conditions for the well-posedness of the second order degenerate equations ($P_2$): $\frac {d}{dt}(Mu')(t) =Au(t)+f(t)$ $(0\leq t\leq 2\pi )$ with periodic boundary conditions $ u(0)=u(2\pi )$, $(Mu')(0)=(Mu')(2\pi )$, in Lebesgue–Bochner spaces $L^p({\mathbb T}, X)$, periodic Besov spaces $B_{p,q}^s({\mathbb T}, X)$ and periodic Triebel–Lizorkin spaces $F_{p,q}^s({\mathbb T}, X)$, where $A$ and $M$ are closed operators in a Banach space $X$ satisfying $D(A)\subset D(M)$. Our results generalize the previous results of W. Arendt and S. Q. Bu when $M= I_X$.
Keywords:
using known results operator valued fourier multipliers vector valued function spaces necessary sufficient conditions well posedness second order degenerate equations frac leq leq periodic boundary conditions lebesgue bochner spaces mathbb periodic besov spaces mathbb periodic triebel lizorkin spaces mathbb where closed operators banach space satisfying subset results generalize previous results arendt
Affiliations des auteurs :
Shangquan Bu 1
@article{10_4064_sm214_1_1,
author = {Shangquan Bu},
title = {Well-posedness of second order degenerate differential equations in vector-valued function spaces},
journal = {Studia Mathematica},
pages = {1--16},
publisher = {mathdoc},
volume = {214},
number = {1},
year = {2013},
doi = {10.4064/sm214-1-1},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm214-1-1/}
}
TY - JOUR AU - Shangquan Bu TI - Well-posedness of second order degenerate differential equations in vector-valued function spaces JO - Studia Mathematica PY - 2013 SP - 1 EP - 16 VL - 214 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/sm214-1-1/ DO - 10.4064/sm214-1-1 LA - en ID - 10_4064_sm214_1_1 ER -
%0 Journal Article %A Shangquan Bu %T Well-posedness of second order degenerate differential equations in vector-valued function spaces %J Studia Mathematica %D 2013 %P 1-16 %V 214 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.4064/sm214-1-1/ %R 10.4064/sm214-1-1 %G en %F 10_4064_sm214_1_1
Shangquan Bu. Well-posedness of second order degenerate differential equations in vector-valued function spaces. Studia Mathematica, Tome 214 (2013) no. 1, pp. 1-16. doi: 10.4064/sm214-1-1
Cité par Sources :