We consider properties of medians as they pertain to the continuity and vanishing oscillation of a
function. Our approach is based on the observation that medians are related to
local sharp maximal functions restricted to a cube of $\mathbb R^n$.
@article{10_4064_sm213_3_3,
author = {Jonathan Poelhuis and Alberto Torchinsky},
title = {Medians, continuity, and vanishing oscillation},
journal = {Studia Mathematica},
pages = {227--242},
year = {2012},
volume = {213},
number = {3},
doi = {10.4064/sm213-3-3},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm213-3-3/}
}
TY - JOUR
AU - Jonathan Poelhuis
AU - Alberto Torchinsky
TI - Medians, continuity, and vanishing oscillation
JO - Studia Mathematica
PY - 2012
SP - 227
EP - 242
VL - 213
IS - 3
UR - http://geodesic.mathdoc.fr/articles/10.4064/sm213-3-3/
DO - 10.4064/sm213-3-3
LA - en
ID - 10_4064_sm213_3_3
ER -
%0 Journal Article
%A Jonathan Poelhuis
%A Alberto Torchinsky
%T Medians, continuity, and vanishing oscillation
%J Studia Mathematica
%D 2012
%P 227-242
%V 213
%N 3
%U http://geodesic.mathdoc.fr/articles/10.4064/sm213-3-3/
%R 10.4064/sm213-3-3
%G en
%F 10_4064_sm213_3_3
Jonathan Poelhuis; Alberto Torchinsky. Medians, continuity, and vanishing oscillation. Studia Mathematica, Tome 213 (2012) no. 3, pp. 227-242. doi: 10.4064/sm213-3-3