Characterizations of amenable representations of compact groups
Studia Mathematica, Tome 213 (2012) no. 3, pp. 207-225

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Let $G$ be a locally compact group and let $\pi $ be a unitary representation. We study amenability and H-amenability of $\pi $ in terms of the weak closure of $(\pi \otimes \pi )(G)$ and factorization properties of associated coefficient subspaces (or subalgebras) in $B(G)$. By applying these results, we obtain some new characterizations of amenable groups.
DOI : 10.4064/sm213-3-2
Keywords: locally compact group unitary representation study amenability h amenability terms weak closure otimes factorization properties associated coefficient subspaces subalgebras applying these results obtain characterizations amenable groups

Michael Yin-Hei Cheng 1

1 Department of Pure Mathematics University of Waterloo Waterloo, ON N2L 3G1, Canada
@article{10_4064_sm213_3_2,
     author = {Michael Yin-Hei Cheng},
     title = {Characterizations of amenable representations of compact groups},
     journal = {Studia Mathematica},
     pages = {207--225},
     publisher = {mathdoc},
     volume = {213},
     number = {3},
     year = {2012},
     doi = {10.4064/sm213-3-2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm213-3-2/}
}
TY  - JOUR
AU  - Michael Yin-Hei Cheng
TI  - Characterizations of amenable representations of compact groups
JO  - Studia Mathematica
PY  - 2012
SP  - 207
EP  - 225
VL  - 213
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm213-3-2/
DO  - 10.4064/sm213-3-2
LA  - en
ID  - 10_4064_sm213_3_2
ER  - 
%0 Journal Article
%A Michael Yin-Hei Cheng
%T Characterizations of amenable representations of compact groups
%J Studia Mathematica
%D 2012
%P 207-225
%V 213
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/sm213-3-2/
%R 10.4064/sm213-3-2
%G en
%F 10_4064_sm213_3_2
Michael Yin-Hei Cheng. Characterizations of amenable representations of compact groups. Studia Mathematica, Tome 213 (2012) no. 3, pp. 207-225. doi: 10.4064/sm213-3-2

Cité par Sources :