Projectively invariant Hilbert–Schmidt kernels and convolution type operators
Studia Mathematica, Tome 213 (2012) no. 1, pp. 61-79 Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences

Voir la notice de l'article

We consider positive definite kernels which are invariant under a multiplier and an action of a semigroup with involution, and construct the associated projective isometric representation on a Hilbert $C^*$-module. We introduce the notion of $C^*$-valued Hilbert–Schmidt kernels associated with two sequences and construct the corresponding reproducing Hilbert $C^*$-module. We also discuss projective invariance of Hilbert–Schmidt kernels. We prove that the range of a convolution type operator associated with a Hilbert–Schmidt kernel coincides with the reproducing Hilbert $C^*$-module associated with its convolution kernel. We show that the integral operator associated with a Hilbert–Schmidt kernel is Hilbert–Schmidt. Finally, we discuss a relation between an integral type operator and convolution type operator.
DOI : 10.4064/sm213-1-5
Keywords: consider positive definite kernels which invariant under multiplier action semigroup involution construct associated projective isometric representation hilbert * module introduce notion * valued hilbert schmidt kernels associated sequences construct corresponding reproducing hilbert * module discuss projective invariance hilbert schmidt kernels prove range convolution type operator associated hilbert schmidt kernel coincides reproducing hilbert * module associated its convolution kernel integral operator associated hilbert schmidt kernel hilbert schmidt finally discuss relation between integral type operator convolution type operator

Jaeseong Heo 1

1 Department of Mathematics Research Institute for Natural Sciences Hanyang University Seoul 133-791, Korea
@article{10_4064_sm213_1_5,
     author = {Jaeseong Heo},
     title = {Projectively invariant {Hilbert{\textendash}Schmidt} kernels and convolution type operators},
     journal = {Studia Mathematica},
     pages = {61--79},
     year = {2012},
     volume = {213},
     number = {1},
     doi = {10.4064/sm213-1-5},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm213-1-5/}
}
TY  - JOUR
AU  - Jaeseong Heo
TI  - Projectively invariant Hilbert–Schmidt kernels and convolution type operators
JO  - Studia Mathematica
PY  - 2012
SP  - 61
EP  - 79
VL  - 213
IS  - 1
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm213-1-5/
DO  - 10.4064/sm213-1-5
LA  - en
ID  - 10_4064_sm213_1_5
ER  - 
%0 Journal Article
%A Jaeseong Heo
%T Projectively invariant Hilbert–Schmidt kernels and convolution type operators
%J Studia Mathematica
%D 2012
%P 61-79
%V 213
%N 1
%U http://geodesic.mathdoc.fr/articles/10.4064/sm213-1-5/
%R 10.4064/sm213-1-5
%G en
%F 10_4064_sm213_1_5
Jaeseong Heo. Projectively invariant Hilbert–Schmidt kernels and convolution type operators. Studia Mathematica, Tome 213 (2012) no. 1, pp. 61-79. doi: 10.4064/sm213-1-5

Cité par Sources :