Addendum to the paper “Generalizations to monotonicity for uniform convergence of double sine integrals over $\overline{\mathbb R}{}^2_+$” (Studia Math. 201 (2010), 287–304)
Studia Mathematica, Tome 212 (2012) no. 3, pp. 285-286

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

DOI : 10.4064/sm212-3-5

Péter Kórus 1 ; Ferenc Móricz 1

1 Bolyai Institute University of Szeged Aradi vértanúk tere 1 Szeged 6720, Hungary
@article{10_4064_sm212_3_5,
     author = {P\'eter K\'orus and Ferenc M\'oricz},
     title = {Addendum to the paper {{\textquotedblleft}Generalizations} to monotonicity for uniform convergence
of double sine integrals over $\overline{\mathbb R}{}^2_+${{\textquotedblright}
(Studia} {Math.} 201 (2010), 287{\textendash}304)},
     journal = {Studia Mathematica},
     pages = {285--286},
     publisher = {mathdoc},
     volume = {212},
     number = {3},
     year = {2012},
     doi = {10.4064/sm212-3-5},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm212-3-5/}
}
TY  - JOUR
AU  - Péter Kórus
AU  - Ferenc Móricz
TI  - Addendum to the paper “Generalizations to monotonicity for uniform convergence
of double sine integrals over $\overline{\mathbb R}{}^2_+$”
(Studia Math. 201 (2010), 287–304)
JO  - Studia Mathematica
PY  - 2012
SP  - 285
EP  - 286
VL  - 212
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm212-3-5/
DO  - 10.4064/sm212-3-5
LA  - en
ID  - 10_4064_sm212_3_5
ER  - 
%0 Journal Article
%A Péter Kórus
%A Ferenc Móricz
%T Addendum to the paper “Generalizations to monotonicity for uniform convergence
of double sine integrals over $\overline{\mathbb R}{}^2_+$”
(Studia Math. 201 (2010), 287–304)
%J Studia Mathematica
%D 2012
%P 285-286
%V 212
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/sm212-3-5/
%R 10.4064/sm212-3-5
%G en
%F 10_4064_sm212_3_5
Péter Kórus; Ferenc Móricz. Addendum to the paper “Generalizations to monotonicity for uniform convergence
of double sine integrals over $\overline{\mathbb R}{}^2_+$”
(Studia Math. 201 (2010), 287–304). Studia Mathematica, Tome 212 (2012) no. 3, pp. 285-286. doi: 10.4064/sm212-3-5

Cité par Sources :