On the isotropic constant of marginals
Studia Mathematica, Tome 212 (2012) no. 3, pp. 219-236
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
We show that if $\mu_{1}, \ldots , \mu_{m}$ are
$\log$-concave subgaussian or supergaussian probability measures
in $\mathbb R^{n_{i}}$, $i\le m$, then for every $F$ in the Grassmannian
$G_{N,n}$, where
$N=n_{1}+\cdots +n_{m}$ and $n N$, the isotropic constant of the marginal of
the product of these measures, $\pi_{F} (\mu_{1}\otimes \cdots
\otimes \mu_{m})$, is bounded. This extends known results on bounds
of the isotropic constant to a larger class of measures.
Keywords:
ldots log concave subgaussian supergaussian probability measures mathbb every grassmannian where cdots isotropic constant marginal product these measures otimes cdots otimes bounded extends known results bounds isotropic constant larger class measures
Affiliations des auteurs :
Grigoris Paouris 1
@article{10_4064_sm212_3_2,
author = {Grigoris Paouris},
title = {On the isotropic constant of marginals},
journal = {Studia Mathematica},
pages = {219--236},
publisher = {mathdoc},
volume = {212},
number = {3},
year = {2012},
doi = {10.4064/sm212-3-2},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm212-3-2/}
}
Grigoris Paouris. On the isotropic constant of marginals. Studia Mathematica, Tome 212 (2012) no. 3, pp. 219-236. doi: 10.4064/sm212-3-2
Cité par Sources :