On the isotropic constant of marginals
Studia Mathematica, Tome 212 (2012) no. 3, pp. 219-236

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We show that if $\mu_{1}, \ldots , \mu_{m}$ are $\log$-concave subgaussian or supergaussian probability measures in $\mathbb R^{n_{i}}$, $i\le m$, then for every $F$ in the Grassmannian $G_{N,n}$, where $N=n_{1}+\cdots +n_{m}$ and $n N$, the isotropic constant of the marginal of the product of these measures, $\pi_{F} (\mu_{1}\otimes \cdots \otimes \mu_{m})$, is bounded. This extends known results on bounds of the isotropic constant to a larger class of measures.
DOI : 10.4064/sm212-3-2
Keywords: ldots log concave subgaussian supergaussian probability measures mathbb every grassmannian where cdots isotropic constant marginal product these measures otimes cdots otimes bounded extends known results bounds isotropic constant larger class measures

Grigoris Paouris 1

1 Department of Mathematics Texas A & M University College Station, TX 77843, U.S.A.
@article{10_4064_sm212_3_2,
     author = {Grigoris Paouris},
     title = {On the isotropic constant of marginals},
     journal = {Studia Mathematica},
     pages = {219--236},
     publisher = {mathdoc},
     volume = {212},
     number = {3},
     year = {2012},
     doi = {10.4064/sm212-3-2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm212-3-2/}
}
TY  - JOUR
AU  - Grigoris Paouris
TI  - On the isotropic constant of marginals
JO  - Studia Mathematica
PY  - 2012
SP  - 219
EP  - 236
VL  - 212
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm212-3-2/
DO  - 10.4064/sm212-3-2
LA  - en
ID  - 10_4064_sm212_3_2
ER  - 
%0 Journal Article
%A Grigoris Paouris
%T On the isotropic constant of marginals
%J Studia Mathematica
%D 2012
%P 219-236
%V 212
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/sm212-3-2/
%R 10.4064/sm212-3-2
%G en
%F 10_4064_sm212_3_2
Grigoris Paouris. On the isotropic constant of marginals. Studia Mathematica, Tome 212 (2012) no. 3, pp. 219-236. doi: 10.4064/sm212-3-2

Cité par Sources :