Generators of maximal left ideals in Banach algebras
Studia Mathematica, Tome 212 (2012) no. 2, pp. 173-193
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
In 1971, Grauert and Remmert proved that a commutative, complex, Noetherian Banach algebra is necessarily finite-dimensional.
More precisely, they proved that a commutative, complex Banach algebra has finite dimension over $\mathbb C$ whenever all the closed
ideals in the algebra are (algebraically) finitely generated. In 1974, Sinclair and Tullo obtained a non-commutative version of this result.
In 1978, Ferreira and Tomassini improved the result of Grauert and Remmert by showing that the statement is also true if one replaces `closed ideals'
by `maximal ideals in the Shilov boundary of $A$'.
We give a shorter proof of this latter result, together with some extensions and related examples.We study the following conjecture. Suppose that all maximal left ideals in a unital
Banach algebra $A$ are finitely generated. Then $A$ is finite-dimensional.
Mots-clés :
grauert remmert proved commutative complex noetherian banach algebra necessarily finite dimensional precisely proved commutative complex banach algebra has finite dimension mathbb whenever closed ideals algebra algebraically finitely generated sinclair tullo obtained non commutative version result ferreira tomassini improved result grauert remmert showing statement replaces closed ideals maximal ideals shilov boundary shorter proof latter result together extensions related examples study following conjecture suppose maximal ideals unital banach algebra finitely generated finite dimensional
Affiliations des auteurs :
H. G. Dales 1 ; W. Żelazko 2
@article{10_4064_sm212_2_5,
author = {H. G. Dales and W. \.Zelazko},
title = {Generators of maximal left ideals in {Banach} algebras},
journal = {Studia Mathematica},
pages = {173--193},
publisher = {mathdoc},
volume = {212},
number = {2},
year = {2012},
doi = {10.4064/sm212-2-5},
language = {de},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm212-2-5/}
}
TY - JOUR AU - H. G. Dales AU - W. Żelazko TI - Generators of maximal left ideals in Banach algebras JO - Studia Mathematica PY - 2012 SP - 173 EP - 193 VL - 212 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/sm212-2-5/ DO - 10.4064/sm212-2-5 LA - de ID - 10_4064_sm212_2_5 ER -
H. G. Dales; W. Żelazko. Generators of maximal left ideals in Banach algebras. Studia Mathematica, Tome 212 (2012) no. 2, pp. 173-193. doi: 10.4064/sm212-2-5
Cité par Sources :