An operator $T$ acting on a Banach space $X$ has property $(gw)$ if $\sigma _{a}(T)\setminus \sigma _{SBF_{+}^{-}}(T)=E(T)$, where $\sigma _{a}(T)$ is the approximate point spectrum of $T$, $\sigma _{SBF_{+}^{-}}(T)$ is the upper semi-B-Weyl spectrum of $T$ and $E(T)$ is the set of all isolated eigenvalues of $T$. We introduce and study two new spectral properties $(v)$ and $(gv)$ in connection with Weyl type theorems. Among other results, we show that $T$ satisfies $(gv)$ if and only if $T$ satisfies $(gw)$ and $\sigma (T)=\sigma _{a}(T)$.
Keywords:
operator acting banach space has property sigma setminus sigma sbf where sigma approximate point spectrum sigma sbf upper semi b weyl spectrum set isolated eigenvalues nbsp introduce study spectral properties connection weyl type theorems among other results satisfies only satisfies sigma sigma
Affiliations des auteurs :
J. Sanabria 
1
;
C. Carpintero 
1
;
E. Rosas 
1
;
O. García 
1
1
Departamento de Matemáticas Escuela de Ciencias Núcleo de Sucre Universidad de Oriente Cumaná, Venezuela
@article{10_4064_sm212_2_3,
author = {J. Sanabria and C. Carpintero and E. Rosas and O. Garc{\'\i}a},
title = {On generalized property $(v)$ for bounded linear operators},
journal = {Studia Mathematica},
pages = {141--154},
year = {2012},
volume = {212},
number = {2},
doi = {10.4064/sm212-2-3},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm212-2-3/}
}
TY - JOUR
AU - J. Sanabria
AU - C. Carpintero
AU - E. Rosas
AU - O. García
TI - On generalized property $(v)$ for bounded linear operators
JO - Studia Mathematica
PY - 2012
SP - 141
EP - 154
VL - 212
IS - 2
UR - http://geodesic.mathdoc.fr/articles/10.4064/sm212-2-3/
DO - 10.4064/sm212-2-3
LA - en
ID - 10_4064_sm212_2_3
ER -
%0 Journal Article
%A J. Sanabria
%A C. Carpintero
%A E. Rosas
%A O. García
%T On generalized property $(v)$ for bounded linear operators
%J Studia Mathematica
%D 2012
%P 141-154
%V 212
%N 2
%U http://geodesic.mathdoc.fr/articles/10.4064/sm212-2-3/
%R 10.4064/sm212-2-3
%G en
%F 10_4064_sm212_2_3
J. Sanabria; C. Carpintero; E. Rosas; O. García. On generalized property $(v)$ for bounded linear operators. Studia Mathematica, Tome 212 (2012) no. 2, pp. 141-154. doi: 10.4064/sm212-2-3