On generalized property $(v)$ for bounded linear operators
Studia Mathematica, Tome 212 (2012) no. 2, pp. 141-154

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

An operator $T$ acting on a Banach space $X$ has property $(gw)$ if $\sigma _{a}(T)\setminus \sigma _{SBF_{+}^{-}}(T)=E(T)$, where $\sigma _{a}(T)$ is the approximate point spectrum of $T$, $\sigma _{SBF_{+}^{-}}(T)$ is the upper semi-B-Weyl spectrum of $T$ and $E(T)$ is the set of all isolated eigenvalues of $T$. We introduce and study two new spectral properties $(v)$ and $(gv)$ in connection with Weyl type theorems. Among other results, we show that $T$ satisfies $(gv)$ if and only if $T$ satisfies $(gw)$ and $\sigma (T)=\sigma _{a}(T)$.
DOI : 10.4064/sm212-2-3
Keywords: operator acting banach space has property sigma setminus sigma sbf where sigma approximate point spectrum sigma sbf upper semi b weyl spectrum set isolated eigenvalues nbsp introduce study spectral properties connection weyl type theorems among other results satisfies only satisfies sigma sigma

J. Sanabria 1 ; C. Carpintero 1 ; E. Rosas 1 ; O. García 1

1 Departamento de Matemáticas Escuela de Ciencias Núcleo de Sucre Universidad de Oriente Cumaná, Venezuela
@article{10_4064_sm212_2_3,
     author = {J. Sanabria and C. Carpintero and E. Rosas and O. Garc{\'\i}a},
     title = {On generalized property $(v)$ for bounded linear operators},
     journal = {Studia Mathematica},
     pages = {141--154},
     publisher = {mathdoc},
     volume = {212},
     number = {2},
     year = {2012},
     doi = {10.4064/sm212-2-3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm212-2-3/}
}
TY  - JOUR
AU  - J. Sanabria
AU  - C. Carpintero
AU  - E. Rosas
AU  - O. García
TI  - On generalized property $(v)$ for bounded linear operators
JO  - Studia Mathematica
PY  - 2012
SP  - 141
EP  - 154
VL  - 212
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm212-2-3/
DO  - 10.4064/sm212-2-3
LA  - en
ID  - 10_4064_sm212_2_3
ER  - 
%0 Journal Article
%A J. Sanabria
%A C. Carpintero
%A E. Rosas
%A O. García
%T On generalized property $(v)$ for bounded linear operators
%J Studia Mathematica
%D 2012
%P 141-154
%V 212
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/sm212-2-3/
%R 10.4064/sm212-2-3
%G en
%F 10_4064_sm212_2_3
J. Sanabria; C. Carpintero; E. Rosas; O. García. On generalized property $(v)$ for bounded linear operators. Studia Mathematica, Tome 212 (2012) no. 2, pp. 141-154. doi: 10.4064/sm212-2-3

Cité par Sources :