On generalized property $(v)$ for bounded linear operators
Studia Mathematica, Tome 212 (2012) no. 2, pp. 141-154
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
An operator $T$ acting on a Banach space $X$ has property $(gw)$ if $\sigma _{a}(T)\setminus \sigma _{SBF_{+}^{-}}(T)=E(T)$, where $\sigma _{a}(T)$ is the approximate point spectrum of $T$, $\sigma _{SBF_{+}^{-}}(T)$ is the upper semi-B-Weyl spectrum of $T$ and $E(T)$ is the set of all isolated eigenvalues of $T$. We introduce and study two new spectral properties $(v)$ and $(gv)$ in connection with Weyl type theorems. Among other results, we show that $T$ satisfies $(gv)$ if and only if $T$ satisfies $(gw)$ and $\sigma (T)=\sigma _{a}(T)$.
Keywords:
operator acting banach space has property sigma setminus sigma sbf where sigma approximate point spectrum sigma sbf upper semi b weyl spectrum set isolated eigenvalues nbsp introduce study spectral properties connection weyl type theorems among other results satisfies only satisfies sigma sigma
Affiliations des auteurs :
J. Sanabria 1 ; C. Carpintero 1 ; E. Rosas 1 ; O. García 1
@article{10_4064_sm212_2_3,
author = {J. Sanabria and C. Carpintero and E. Rosas and O. Garc{\'\i}a},
title = {On generalized property $(v)$ for bounded linear operators},
journal = {Studia Mathematica},
pages = {141--154},
publisher = {mathdoc},
volume = {212},
number = {2},
year = {2012},
doi = {10.4064/sm212-2-3},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm212-2-3/}
}
TY - JOUR AU - J. Sanabria AU - C. Carpintero AU - E. Rosas AU - O. García TI - On generalized property $(v)$ for bounded linear operators JO - Studia Mathematica PY - 2012 SP - 141 EP - 154 VL - 212 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/sm212-2-3/ DO - 10.4064/sm212-2-3 LA - en ID - 10_4064_sm212_2_3 ER -
%0 Journal Article %A J. Sanabria %A C. Carpintero %A E. Rosas %A O. García %T On generalized property $(v)$ for bounded linear operators %J Studia Mathematica %D 2012 %P 141-154 %V 212 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.4064/sm212-2-3/ %R 10.4064/sm212-2-3 %G en %F 10_4064_sm212_2_3
J. Sanabria; C. Carpintero; E. Rosas; O. García. On generalized property $(v)$ for bounded linear operators. Studia Mathematica, Tome 212 (2012) no. 2, pp. 141-154. doi: 10.4064/sm212-2-3
Cité par Sources :