Besov algebras on Lie groups of polynomial growth
Studia Mathematica, Tome 212 (2012) no. 2, pp. 119-139

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We prove an algebra property under pointwise multiplication for Besov spaces defined on Lie groups of polynomial growth. When the setting is restricted to H-type groups, this algebra property is generalized to paraproduct estimates.
DOI : 10.4064/sm212-2-2
Keywords: prove algebra property under pointwise multiplication besov spaces defined lie groups polynomial growth setting restricted h type groups algebra property generalized paraproduct estimates

Isabelle Gallagher 1 ; Yannick Sire 2

1 Institut de Mathématiques UMR 7586 Université Paris VII 175, rue du Chevaleret F-75013 Paris, France
2 Université Aix-Marseille and CNRS LATP, CMI 39, rue F. Joliot-Curie F-13453 Marseille Cedex 13, France
@article{10_4064_sm212_2_2,
     author = {Isabelle Gallagher and Yannick Sire},
     title = {Besov algebras on {Lie} groups of polynomial growth},
     journal = {Studia Mathematica},
     pages = {119--139},
     publisher = {mathdoc},
     volume = {212},
     number = {2},
     year = {2012},
     doi = {10.4064/sm212-2-2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm212-2-2/}
}
TY  - JOUR
AU  - Isabelle Gallagher
AU  - Yannick Sire
TI  - Besov algebras on Lie groups of polynomial growth
JO  - Studia Mathematica
PY  - 2012
SP  - 119
EP  - 139
VL  - 212
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm212-2-2/
DO  - 10.4064/sm212-2-2
LA  - en
ID  - 10_4064_sm212_2_2
ER  - 
%0 Journal Article
%A Isabelle Gallagher
%A Yannick Sire
%T Besov algebras on Lie groups of polynomial growth
%J Studia Mathematica
%D 2012
%P 119-139
%V 212
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/sm212-2-2/
%R 10.4064/sm212-2-2
%G en
%F 10_4064_sm212_2_2
Isabelle Gallagher; Yannick Sire. Besov algebras on Lie groups of polynomial growth. Studia Mathematica, Tome 212 (2012) no. 2, pp. 119-139. doi: 10.4064/sm212-2-2

Cité par Sources :