Orbits of linear operators and Banach space geometry
Studia Mathematica, Tome 212 (2012) no. 1, pp. 21-39

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Let $T$ be a bounded linear operator on a (real or complex) Banach space $X$. If $(a_n)$ is a sequence of non-negative numbers tending to 0, then the set of $x \in X$ such that $\|T^nx\| \geq a_n \|T^n\|$ for infinitely many $n$'s has a complement which is both $\sigma$-porous and Haar-null. We also compute (for some classical Banach space) optimal exponents $q>0$ such that for every non-nilpotent operator $T$, there exists $x \in X$ such that $(\|T^nx\|/\|T^n\|) \notin \ell^{q}(\mathbb{N})$, using techniques which involve the modulus of asymptotic uniform smoothness of $X$.
DOI : 10.4064/sm212-1-2
Keywords: bounded linear operator real complex banach space sequence non negative numbers tending set geq infinitely many has complement which sigma porous haar null compute classical banach space optimal exponents every non nilpotent operator there exists notin ell mathbb using techniques which involve modulus asymptotic uniform smoothness nbsp

Jean-Matthieu Augé 1

1 Université Bordeaux 1 351, Cours de la Libération F-33405 Talence Cedex, France
@article{10_4064_sm212_1_2,
     author = {Jean-Matthieu Aug\'e},
     title = {Orbits of linear operators and {Banach} space geometry},
     journal = {Studia Mathematica},
     pages = {21--39},
     publisher = {mathdoc},
     volume = {212},
     number = {1},
     year = {2012},
     doi = {10.4064/sm212-1-2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm212-1-2/}
}
TY  - JOUR
AU  - Jean-Matthieu Augé
TI  - Orbits of linear operators and Banach space geometry
JO  - Studia Mathematica
PY  - 2012
SP  - 21
EP  - 39
VL  - 212
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm212-1-2/
DO  - 10.4064/sm212-1-2
LA  - en
ID  - 10_4064_sm212_1_2
ER  - 
%0 Journal Article
%A Jean-Matthieu Augé
%T Orbits of linear operators and Banach space geometry
%J Studia Mathematica
%D 2012
%P 21-39
%V 212
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/sm212-1-2/
%R 10.4064/sm212-1-2
%G en
%F 10_4064_sm212_1_2
Jean-Matthieu Augé. Orbits of linear operators and Banach space geometry. Studia Mathematica, Tome 212 (2012) no. 1, pp. 21-39. doi: 10.4064/sm212-1-2

Cité par Sources :