We prove that every topological dynamical system $(X,T)$ has a faithful zero-dimensional principal extension, i.e. a zero-dimensional extension $(Y,S)$ such that for every $S$-invariant measure $\nu $ on $Y$ the conditional entropy $h(\nu\,|\, X)$ is zero, and, in addition, every invariant measure on $X$ has exactly one preimage on $Y$. This is a strengthening of the authors' result in Acta Appl. Math. [to appear] (where the extension was principal, but not necessarily faithful).
Keywords:
prove every topological dynamical system has faithful zero dimensional principal extension zero dimensional extension every s invariant measure conditional entropy zero addition every invariant measure has exactly preimage strengthening authors result acta appl math appear where extension principal necessarily faithful
Affiliations des auteurs :
Tomasz Downarowicz 
1
;
Dawid Huczek 
1
1
Institute of Mathematics and Computer Science Wrocław Institute of Technology Wybrzeże Wyspiańskiego 27 50-370 Wrocław, Poland
@article{10_4064_sm212_1_1,
author = {Tomasz Downarowicz and Dawid Huczek},
title = {Faithful zero-dimensional principal extensions},
journal = {Studia Mathematica},
pages = {1--19},
year = {2012},
volume = {212},
number = {1},
doi = {10.4064/sm212-1-1},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm212-1-1/}
}
TY - JOUR
AU - Tomasz Downarowicz
AU - Dawid Huczek
TI - Faithful zero-dimensional principal extensions
JO - Studia Mathematica
PY - 2012
SP - 1
EP - 19
VL - 212
IS - 1
UR - http://geodesic.mathdoc.fr/articles/10.4064/sm212-1-1/
DO - 10.4064/sm212-1-1
LA - en
ID - 10_4064_sm212_1_1
ER -
%0 Journal Article
%A Tomasz Downarowicz
%A Dawid Huczek
%T Faithful zero-dimensional principal extensions
%J Studia Mathematica
%D 2012
%P 1-19
%V 212
%N 1
%U http://geodesic.mathdoc.fr/articles/10.4064/sm212-1-1/
%R 10.4064/sm212-1-1
%G en
%F 10_4064_sm212_1_1
Tomasz Downarowicz; Dawid Huczek. Faithful zero-dimensional principal extensions. Studia Mathematica, Tome 212 (2012) no. 1, pp. 1-19. doi: 10.4064/sm212-1-1