We study the space of $p$-compact operators, $\mathcal K_p$,
using the theory of tensor norms and operator ideals. We prove that $\mathcal
K_p$ is associated to $/d_p$, the left injective associate of the Chevet–Saphar
tensor norm $d_p$ (which is equal to $g_{p'}'$). This allows us to relate the
theory of $p$-summing operators to that of $p$-compact operators. Using the
results known for the former class and appropriate hypotheses on $E$ and $F$ we
prove that $\mathcal K_p(E;F)$ is equal to $\mathcal K_q(E;F)$ for a wide range
of values of $p$ and $q$, and show that our results are sharp. We also exhibit
several structural properties of $\mathcal K_p$. For instance, we show that
$\mathcal K_p$ is regular, surjective, and
totally accessible, and we characterize its
maximal hull $\mathcal K_p^{\max}$ as the dual ideal of $p$-summing
operators, $\varPi_p^{\rm dual}$. Furthermore, we prove that $\mathcal K_p$ coincides
isometrically with $\mathcal {QN}_p^{\rm dual}$, the dual to the ideal of the quasi $p$-nuclear operators.
Keywords:
study space p compact operators mathcal using theory tensor norms operator ideals prove mathcal associated injective associate chevet saphar tensor norm which equal allows relate theory p summing operators p compact operators using results known former class appropriate hypotheses prove mathcal f equal mathcal f wide range values results sharp exhibit several structural properties mathcal instance mathcal regular surjective totally accessible characterize its maximal hull mathcal max dual ideal p summing operators varpi dual furthermore prove mathcal coincides isometrically mathcal dual dual ideal quasi p nuclear operators
Affiliations des auteurs :
Daniel Galicer 
1
;
Silvia Lassalle 
1
;
Pablo Turco 
1
1
Departamento de Matemática – Pab. I Facultad de Ciencias Exactas y Naturales Universidad de Buenos Aires (1428) Buenos Aires, Argentina
@article{10_4064_sm211_3_8,
author = {Daniel Galicer and Silvia Lassalle and Pablo Turco},
title = {The ideal of $p$-compact operators: a tensor product approach},
journal = {Studia Mathematica},
pages = {269--286},
year = {2012},
volume = {211},
number = {3},
doi = {10.4064/sm211-3-8},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm211-3-8/}
}
TY - JOUR
AU - Daniel Galicer
AU - Silvia Lassalle
AU - Pablo Turco
TI - The ideal of $p$-compact operators: a tensor product approach
JO - Studia Mathematica
PY - 2012
SP - 269
EP - 286
VL - 211
IS - 3
UR - http://geodesic.mathdoc.fr/articles/10.4064/sm211-3-8/
DO - 10.4064/sm211-3-8
LA - en
ID - 10_4064_sm211_3_8
ER -
%0 Journal Article
%A Daniel Galicer
%A Silvia Lassalle
%A Pablo Turco
%T The ideal of $p$-compact operators: a tensor product approach
%J Studia Mathematica
%D 2012
%P 269-286
%V 211
%N 3
%U http://geodesic.mathdoc.fr/articles/10.4064/sm211-3-8/
%R 10.4064/sm211-3-8
%G en
%F 10_4064_sm211_3_8
Daniel Galicer; Silvia Lassalle; Pablo Turco. The ideal of $p$-compact operators: a tensor product approach. Studia Mathematica, Tome 211 (2012) no. 3, pp. 269-286. doi: 10.4064/sm211-3-8