The ideal of $p$-compact operators: a tensor product approach
Studia Mathematica, Tome 211 (2012) no. 3, pp. 269-286 Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences

Voir la notice de l'article

We study the space of $p$-compact operators, $\mathcal K_p$, using the theory of tensor norms and operator ideals. We prove that $\mathcal K_p$ is associated to $/d_p$, the left injective associate of the Chevet–Saphar tensor norm $d_p$ (which is equal to $g_{p'}'$). This allows us to relate the theory of $p$-summing operators to that of $p$-compact operators. Using the results known for the former class and appropriate hypotheses on $E$ and $F$ we prove that $\mathcal K_p(E;F)$ is equal to $\mathcal K_q(E;F)$ for a wide range of values of $p$ and $q$, and show that our results are sharp. We also exhibit several structural properties of $\mathcal K_p$. For instance, we show that $\mathcal K_p$ is regular, surjective, and totally accessible, and we characterize its maximal hull $\mathcal K_p^{\max}$ as the dual ideal of $p$-summing operators, $\varPi_p^{\rm dual}$. Furthermore, we prove that $\mathcal K_p$ coincides isometrically with $\mathcal {QN}_p^{\rm dual}$, the dual to the ideal of the quasi $p$-nuclear operators.
DOI : 10.4064/sm211-3-8
Keywords: study space p compact operators mathcal using theory tensor norms operator ideals prove mathcal associated injective associate chevet saphar tensor norm which equal allows relate theory p summing operators p compact operators using results known former class appropriate hypotheses prove mathcal f equal mathcal f wide range values results sharp exhibit several structural properties mathcal instance mathcal regular surjective totally accessible characterize its maximal hull mathcal max dual ideal p summing operators varpi dual furthermore prove mathcal coincides isometrically mathcal dual dual ideal quasi p nuclear operators

Daniel Galicer  1   ; Silvia Lassalle  1   ; Pablo Turco  1

1 Departamento de Matemática – Pab. I Facultad de Ciencias Exactas y Naturales Universidad de Buenos Aires (1428) Buenos Aires, Argentina
@article{10_4064_sm211_3_8,
     author = {Daniel Galicer and Silvia Lassalle and Pablo Turco},
     title = {The ideal of $p$-compact operators: a tensor product approach},
     journal = {Studia Mathematica},
     pages = {269--286},
     year = {2012},
     volume = {211},
     number = {3},
     doi = {10.4064/sm211-3-8},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm211-3-8/}
}
TY  - JOUR
AU  - Daniel Galicer
AU  - Silvia Lassalle
AU  - Pablo Turco
TI  - The ideal of $p$-compact operators: a tensor product approach
JO  - Studia Mathematica
PY  - 2012
SP  - 269
EP  - 286
VL  - 211
IS  - 3
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm211-3-8/
DO  - 10.4064/sm211-3-8
LA  - en
ID  - 10_4064_sm211_3_8
ER  - 
%0 Journal Article
%A Daniel Galicer
%A Silvia Lassalle
%A Pablo Turco
%T The ideal of $p$-compact operators: a tensor product approach
%J Studia Mathematica
%D 2012
%P 269-286
%V 211
%N 3
%U http://geodesic.mathdoc.fr/articles/10.4064/sm211-3-8/
%R 10.4064/sm211-3-8
%G en
%F 10_4064_sm211_3_8
Daniel Galicer; Silvia Lassalle; Pablo Turco. The ideal of $p$-compact operators: a tensor product approach. Studia Mathematica, Tome 211 (2012) no. 3, pp. 269-286. doi: 10.4064/sm211-3-8

Cité par Sources :