Once more on positive commutators
Studia Mathematica, Tome 211 (2012) no. 3, pp. 241-245 Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences

Voir la notice de l'article

Let $A$ and $B$ be bounded operators on a Banach lattice $E$ such that the commutator $C = A B - B A$ and the product $BA$ are positive operators. If the product $AB$ is a power-compact operator, then $C$ is a quasi-nilpotent operator having a triangularizing chain of closed ideals of $E$. This answers an open question posed by Bračič et al. [Positivity 14 (2010)], where the study of positive commutators of positive operators was initiated.
DOI : 10.4064/sm211-3-5
Keywords: bounded operators banach lattice commutator product positive operators product power compact operator quasi nilpotent operator having triangularizing chain closed ideals answers question posed bra positivity where study positive commutators positive operators initiated

Roman Drnovšek  1

1 Department of Mathematics Faculty of Mathematics and Physics University of Ljubljana Jadranska 19 SI-1000 Ljubljana, Slovenia
@article{10_4064_sm211_3_5,
     author = {Roman Drnov\v{s}ek},
     title = {Once more on positive commutators},
     journal = {Studia Mathematica},
     pages = {241--245},
     year = {2012},
     volume = {211},
     number = {3},
     doi = {10.4064/sm211-3-5},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm211-3-5/}
}
TY  - JOUR
AU  - Roman Drnovšek
TI  - Once more on positive commutators
JO  - Studia Mathematica
PY  - 2012
SP  - 241
EP  - 245
VL  - 211
IS  - 3
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm211-3-5/
DO  - 10.4064/sm211-3-5
LA  - en
ID  - 10_4064_sm211_3_5
ER  - 
%0 Journal Article
%A Roman Drnovšek
%T Once more on positive commutators
%J Studia Mathematica
%D 2012
%P 241-245
%V 211
%N 3
%U http://geodesic.mathdoc.fr/articles/10.4064/sm211-3-5/
%R 10.4064/sm211-3-5
%G en
%F 10_4064_sm211_3_5
Roman Drnovšek. Once more on positive commutators. Studia Mathematica, Tome 211 (2012) no. 3, pp. 241-245. doi: 10.4064/sm211-3-5

Cité par Sources :